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Preface

This volume contains the proceedings of the Fifth International Workshop on
Graph Computation Models (GCM 20141). The workshop took place in York,
UK, on 21st July, 2014, as part of ICGT 2014 (the seventh edition of the In-
ternational Conference on Graph Transformation) and of STAF 2014 (Software
Technologies: Applications and Foundations).

The aim of GCM2 workshop series is to bring together researchers interested
in all aspects of computation models based on graphs and graph transformation
techniques. It promotes the cross-fertilizing exchange of ideas and experiences
among researchers and students from the different communities interested in the
foundations, applications, and implementations of graph computation models
and related areas. Previous editions of GCM series were held in Natal, Brazil
(GCM 2006), in Leicester, UK (GCM 2008), in Enschede, The Netherlands
(GCM 2010) and in Bremen, Germany (GCM 2012).

These proceedings contain the abstracts of two invited talks and eight ac-
cepted papers. All submissions were subject to careful refereeing. The topics
of accepted papers include theoretical aspects of graph transformation, proof
techniques as well as application issues of graph computation models. Selected
papers from these proceedings will be published as an issue of the international
journal Electronic Communications of the EASST.

We would like to thank all who contributed to the success of GCM 2014, espe-
cially the Programme Committee and the additional reviewers for their valuable
contributions to the selection process as well as the contributing authors. We
would like also to express our gratitude to all members of the ICGT 2014 and
STAF 2014 Organizing Committees for their help in organizing GCM 2014 in
York, UK.

July, 2014 Rachid Echahed, Annegret Habel and Mohamed Mosbah

Programme co-chairs of GCM 2014

1GCM 2014 web site: http://gcm2014.imag.fr
2GCM web site : http://gcm-events.org
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On the Notion of Graphs in Graph Theory and
Graph Transformation

Gabriele Taentzer

Philipps-Universität Marburg, Germany

Graphs are regularly used to model structures as they occur e.g. in chemistry,
biology, physics, social sciences, linguistics and especially, in computer science.
We consider a variety of graph examples including typical tasks to be performed
on these graphs. These tasks are basically concerned with analyzing graph prop-
erties as considered in graph theory or changing graphs stepwise as done by
graph transformations. We will discuss how graph representations depend on
the operations to be performed and hence, how they differ within the areas of
graph theory and graph transformation.

We apply domain analysis to analyze variabilities and commonalities of graph
concepts and develop a feature model to give an overview on core features of
graphs and to understand how they are related to each other. (This work is
inspired by the domain analysis of model transformation approaches presented
by Czarnecki and Helsen.) For selected feature combinations, i.e. graph variants,
suitable graph representations as well as their advantages and disadvantages wrt.
selected graph operations are discussed.
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Well-Structured Graph Transformation Systems

Barbara König

Universität Duisburg-Essen, Germany

Graph transformation systems (GTSs) can be seen as well-structured transi-
tion systems (WSTSs), thus obtaining decidability results for certain classes of
GTSs. It was shown that well-structuredness can be obtained using the minor
ordering as a well-quasi-order. We extend this idea to obtain a general framework
in which several types of GTSs can be seen as (restricted) WSTSs. We instantiate
this framework with the subgraph ordering and the induced subgraph ordering.
Furthermore we present the tool UNCOVER and discuss runtime results.
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Graph Transformation with Symbolic Attributes
via Monadic Coalgebra Homomorphisms

Wolfram Kahl

McMaster University, Hamilton, Ontario, Canada, kahl@cas.mcmaster.ca

Abstract. We show how a coalgebraic approach leads to more natural
representations of many kinds of graph structures that in the algebraic
approach are frequently dealt with using ad-hoc constructions. For the
case of symbolically attributed graphs, we demonstrate how using sub-
stituting coalgebra homomorphisms in double-pushout rewriting steps
yields a powerful and easily understandable transformation mechanism.

Keywords: Transformation of symbolically attributed graphs, attributed graphs
as coalgebras, categoric approach to graph transformation

1 Introduction

An attributed graph is a graph where (some of) the items (nodes and edges) carry
“attributes”, which are taken from some attribute datatypes. Formal treatments
of datatypes [EM85, BKL+91, BM04] typically characterise datatypes as alge-
bras, or “sets with operations”; they are most frequently implemented as software
libraries where the sets are only abstract entities, the operations are executable
code, and only the elements of the sets are represented as static data. Graphs,
too, can be characterised as algebras, most prominently in the “algebraic ap-
proach to graph transformation” [CMR+97, EHK+97, EEPT06]. However, the
sets in question are the sets of nodes and edges, and the “operations” are the
incidence relations; the whole algebra, understood as a graph, is typically repre-
sented as static data.

In attributed graphs, these two conflicting views of algebras come together,
and formalisations that consider an attributed graph as a single algebra that
includes both graph item sorts and attribute value sorts do not correspond to the
way attributed graphs are understood in terms of data organisation. For graph
transformation, the theory of the algebraic approach also contributes to the
necessity of keeping the graph algebra separate from the attribute value algebra,
since pushouts of graph structures, customarily considered as unary algebras
[Löw90, CMR+97], can be calculated component-wise, while for typical attribute
value algebras, this is not the case. Indeed, most applications have no need
to transform the attribute value algebras, since most transformation concepts
for attributed graphs expect the transformation results to be attributed over
the same attribute datatypes. An exception to this consideration are symbolic
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attributes, which can easily be drawn from term algebras over different variable
sets during different stages of transformation.

Unary algebras are in fact also co-unary coalgebras, and many kinds of graphs
that do not fit the mould of unary algebras can actually naturally be considered
as more general coalgebras. This argument was first made in [Kah14]; in current
paper we continue that development and show how to use substituting coalgebra
homomorphisms for DPO rewriting of symbolically attributed graphs.

After discussing related work in the next section and providing necessary
notation in Sect. 3, we explain the basic technicalities for modelling graph struc-
tures using coalgebras in Sect. 4. Using the example of edge-labelled and node-
attributed graphs, we move to substituting coalgebra homomorphisms in Sect. 5.
The resulting category is an instance of the monadic product coalgebra categories
introduced in [Kah14]; we summarise definition and basic results in Sect. 6. The
resulting pushouts are used in Sect. 7 to obtain direct derivations of attributed
graphs. We contrast our approach with the adhesive approach of [EEPT06] in
more detail in Sect. 8. Appendix A contains a characterisation of monomor-
phisms in categories of substitutions.

2 Related Work

Löwe et al. [LKW93] appear to have been the first to consider attributed graphs
in the context of the algebraic approach to graph transformation; they propose
to extend the customary unary graph structure signature with an arbitrary at-
tribute signature, and a set of unary attribution operators connecting the two.
These attribution operators typically may have as their source special sorts of
attribute carriers, which can be deleted and re-created for relabelling. König and
Kozioura [KK08] essentially follow the approach of [LKW93], but choose a rigid
organisation of unlabelled nodes, and labelled hyperedges with a single attribute
the sort of which is determined by the edge label. Homomorphisms include al-
gebra homomorphisms. In a rule (L,R, α, g), the two rule sides L and R are
attributed graphs over the term algebra over a globally fixed set of variables,
with L attributed only with variables, and only variables occurring in L may
occur in R. The rule morphism is defined by an injective node mapping α; rule
morphisms are not defined for edges and attributes, and therefore are a special
case of partial morphisms. (The Boolean guard term g controls applicability of
the rule.) Matches need to be injective on edges; rewrite steps preserve the data
algebra. In the double-pushout approach, [HKT02, EPT04] use attribution edges
connecting graph items with attribute values, and are essentially predecessors
of [EEPT06], the approach of which is discussed in more detail in Sect. 8. All
the above consider arbitrary attribute algebras for the application graphs, with
term algebras a special case.

For the “symbolic graphs” of [Ore11, OL10b], the data algebra is not consid-
ered an explicit part of the graph structure; instead, a “symbolic graph” is an
E-graph over a sorted variable set together with a set of formulae (most typically
equations) that may refer to constants drawn from the data algebra.
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Since the conventionalM-adhesive approach does not cover rule applications
that change attributes, [Gol12] presents a variant of adhesive categories that
softens the adhesive restrictions to only affect the pushouts that are actually
needed during transformation, avoiding spurious non-unifiability problems for
attributes. Similarly, Habel and Plump [HP12] restrict the class of morphisms
to be used in “vertical” roles in the rewriting steps, to be able to capture the
relabelling DPO graph transformations of [HP02, Plu09] which use partially
labelled interface graphs. A different approach to relabelling is that of Rebout
[RFS08], which combines de-facto-partial attribution relations with a special
mechanism for relabelling via “computations” in the left-hand side of the rule.

Rutten’s overview article [Rut00] is useful for general theory of coalgebras.
Related with our current work is the part of the coalgebra literature that deals
with combining algebras and coalgebras; one approach considers separate al-
gebraic and coalgebraic structures in the same carriers, for example Kurz and
Hennicker’s “Institutions for Modular Coalgebraic Specifications” [KH02]. A fur-
ther generalisation are “dialgebras” [Hag87, PZ01], which have a single carrier
X , and operations fi : Fi X → Gi X , where both Fi and Gi are polynomial
functors.

3 Notation and Background: Categories and Monads

We assume familiarity with the basics of category theory; for notation, we write
“f : A→B” to declare that morphism f goes from object A to object B, and
use “.,” as the associative binary forward composition operator that maps two
morphisms f : A→B and g : B→C to (f .,g) : A→C . The identity morphism for
object A is written IA. We assign “.,” higher priority than other binary operators,
and assign unary operators higher priority than all binary operators.

The category of sets and functions is denoted by Set .
A functor F from one category to another maps objects to objects and

morphisms to morphisms respecting the structure generated by →, I, and com-
position; we denote functor application by juxtaposition both for objects, F A,
and for morphisms, F f . Although we use forward composition of morphisms,
we use backward composition “◦” for functors, with (G ◦ F) A = G (F A).

A monad on a category C consists is a functor M : C→C for which there
are two natural transformations (“polymorphic morphisms”) ηA : A → M A
and µA : M (M A) → M A satisfying ηM A

., µA = I and M ηA
., µA =

I and M µA
., µA = µM A

., µA. Important monads are the List monad, and
the term monad TΣ for any (algebraic) signature Σ. For the former, µList,A :
List (List A)→ List A is the function that flattens (or concatenates) lists of lists.
For the latter, TΣ V is the set of terms with elements of set V used as variables;
the function µTΣ ,V : TΣ (TΣ V )→TΣ V maps nested terms (or terms using V -
terms as variables) into “flattened” V -terms. Each monad M on C induces the
so-called Kleisli category KM that has the same objects as C, but C-morphisms
A → M B as morphisms from A to B . Kleisli-composition of f : A → M B
with g : B →M C will be written f # g ; this is defined by f # g = f ., (M g) .,µC .
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In the term monad TΣ , Kleisli morphisms are substitutions σ : V1→TΣ V2,
and Kleisli composition is just composition of substitutions.

The double-pushout (DPO) approach to high-level rewriting [CMR+97] uses

transformation rules that are spans L l� G r-R
in an appropriate category between the left-hand side
L, gluing object G , and right-hand side R. A direct
transformation step from object A to object B via
such a rule is given by a double pushout diagram,
with host object H , where m is called the match.

L l� G r- R

m
?

h
?

n
?

A a� H b- B

4 The Coalgebra View of Graph Structures

In the context of the algebraic approach to graph transformation, graph struc-
tures have traditionally been presented as unary algebras [Löw90, CMR+97].
However, as such they are the intersection between algebras and coalgebras, and
in [Kah14], we showed how more general coalgebras are useful in modelling graph
features. Recall: Given a (unary) functor F ,

– an F -algebra A = (CA, fA) is an object CA together with a morphism
fA : F CA→CA

– an F -coalgebra A = (CA, fA) is an object CA together with a morphism
fA : CA→F CA.

Whereas non-unary algebras allow structured types for the arguments of their
operations, non-unary coalgebras allow structured types for their results. Also,
while in practical algebras, the shape of the arguments can typically be described
by a polynomial functor, more general functors are routinely considered for the
shape of the results in coalgebras.

In the signatures for such coalgebras, we therefore allow additional syntax for
such functors, like List, with fixed interpretation, just like the product functor
× that is used for the argument shapes of non-unary algebras. In general, we
assume a language of functor symbols (with arity), and a signature introduces
first, after “sorts:”, a list of sort symbols, and then, after “ops:”, a list of function
symbols (or operation symbols), and for each operation symbol, an argument type
expression and a result type expression (separated by “→”) each built from the
functor symbols and the sort symbols.

– An algebraic signature has only single sort symbols as result types.
– An coalgebraic signature has only single sort symbols as argument types.

For example, the following is a coalgebraic signature for directed hypergraphs
where each hyperedge has a sequence of source nodes and a sequence of target
nodes, and each node is labelled with an element of the constant set L:

sigDHG := 〈 sorts: N,E

ops: src : E→ List N

trg : E→ List N

nlab : N→ L 〉
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The coalgebra functor corresponding to sigDHG is a functor between product
categories because of the two sorts:

FsigDHG (N , E ) = (L , ((List N )× (List N )))

Since in algebras, all operations must have a sort as result, modelling labelled
graphs as algebras always has to employ the trick of declaring the label sets as
additional sorts, and then consider the subcategory that has algebras with a fixed
choice for these label sets, and morphisms that map them only with the identity.
Similarly, list-valued source and target functions are frequently considered for
algebraic graph transformation, but with ad-hoc definitions for morphisms and
custom proofs of their properties. In contrast, declaring these features via a
coalgebra signature such as sigDHG directly captures the mathematical intent.

5 Attributed Graphs as Coalgebras

The expressive power of coalgebraic signatures extends to attributed graphs
without any effort. For example, the following is a coalgebraic signature for edge-
labelled (with label set L) and node-attributed graphs, with symbolic attributes
taken from the term algebra over some term signature Σ and with variables from
the variable carrier set for sort V:

sigSNAGΣ := 〈 sorts: N,E,V

ops: src : E→ N

trg : E→ N

lab : E→ L
attr : N→ TΣ V 〉

The resulting homomorphism concept only allows renaming of variables:

Fact 5.1 A sigSNAGΣ-coalgebra homomorphism F : G1 → G2 consists of three
mappings FN : N1 → N2 and FE : E1 → E2 and FV : V1 → V2 satisfying the
following conditions:

FE
., src2 = src1

., FN FE
., lab2 = lab1

FE
., trg2 = trg1

., FN FN
., attr2 = attr1

., TΣ FV

DPO rewriting in this category would have to rely on deletion and re-creation of
attribute carrying nodes to implement relabelling, similar to [LKW93, KK08].
In addition we also lack the ability to instantiate rules via variable substitution
as part of the morphism concept, and might therefore be tempted to add such
instantiation outside the DPO rewriting framework, as in [PS04].

The homomorphism concept for sigSNAGΣ-coalgebras can be “fixed” to allow
substitution, by also adapting the morphism conditions to take the substituted
variables inside the image terms of the attribution function into account:
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Definition 5.2 We define the category SNAGΣ to have sigSNAGΣ-coalgebras
as objects, and a morphism F : G1 → G2 consists of three mappings typed as
shown to the left, satisfying the conditions shown to the right:

FN : N1 → N2

FE : E1 → E2

FV : V1 → TΣ V2

FE
., src2 = src1

., FN FE
., lab2 = lab1

FE
., trg2 = trg1

., FN FN
., attr2 = attr1 # FV

Note that FV is now a morphism in the Kleisli category of the term monad TΣ ,
and accordingly the homomorphism condition for FV employs Kleisli composition
#. It is not hard to verify that this category is well-defined — the key to the proof
is to recognise that the FV components are substitutions and compose via Kleisli
composition of the term monad.

6 Monadic Product Coalgebras

In [Kah14], we introduced the concept of “monadic product coalgebras” as ab-
stract setting for graph structures with substituting homomorphisms, which dis-
tinguishes “graph item sorts” from “variable sorts” by setting the formalisation
in the product category C1 × C2, assuming:

– two categories C1 and C2,
– a monad M on C2,
– a functor F from C1 × C2 to C1.

In terms of coalgebraic signatures, this implements the restriction that sorts
mentioned as monad arguments do not occur as source sorts of operators, and
that the monad must not depend on sorts that do occur as source sorts of oper-
ators. This restriction is satisfied by all simple kinds of symbolically attributed
graphs where the monad is typically a term monad, is applied only to sets of free
variables, and these variables do not otherwise participate in the graph structure.

Definition 6.1 ([Kah14]) AnM-F-product-coalgebra A is a triple (A1,A2, opA)
consisting of
– an object A1 of C1, and
– an object A2 of C2, and
– a morphism opA : A1 → F (A1, M A2)

AM-F-product-coalgebra homomorphism f from (A1,A2, opA) to (B1,B2, opB )
is a pair (f1, f2) consisting of a C1-morphism f1 from A1 to B1 and a morphism
f2 from A2 to B2 in the Kleisli category of M such that

f1
., opB = opA

., F (f1, M f2
., µ) .

Morphism composition is composition of the corresponding product category.
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This morphism composition is well-defined, and induces a category. If we
let M0 be the product monad of the identity monad on C1 and M, then we
see that M-F-product-coalgebra homomorphism are in fact morphisms of the
Kleisli category KM0 , and also use its composition. If we further define F0 as
endofunctor on C1 × C2 by F0(X1,X2) = (F(X1,X2), 1l), then an M-F-product-
coalgebra is indeed a (F0◦M0)-coalgebra. (This factorisation is further explored
in [Kah14], and is too general for pushout creation).

Example 6.2 The category SNAGΣ of Def. 5.2 is equivalent to the category
of TΣ-FsigSNAG-product-coalgebras, where C1 = Set × Set for nodes and edges,
C2 = Set for variables (or terms), and

FsigSNAG ((N ,E ),T ) = (T , (N ×N × L)) .

The four constituents of the result type of FsigSNAG correspond to the four op-
erators attr, src, trg, and lab of sigSNAG, with attr being the first constituent,
since it is the only operator starting from sort N, while the remaining three all
start from sort E.

Since M0 is a product monad, pushouts in KM0
are calculated component-

wise, that is, they consist of a pushout in C1 and a pushout in the Kleisli category
of M, and we have:

Theorem 6.3 ([Kah14]) The forgetful functor from the category of
M-F-product-coalgebra homomorphisms to the Kleisli category of M0 creates
pushouts.

More explicitly, if a span B f� A g-C of M-F-product-coalgebra homo-

morphisms is given, and also a cospan (B1,B2) h- (D1,D2) k� (C1,C2) in
KM0

that is a pushout for the Kleisli morphisms underlying F and G , then
(D1,D2) can be extended to a M-F-product-coalgebra D = (D1,D2, opD) such

that B h-D k� C is a pushout for B f� A g-C in the M-F-product-
coalgebra category.

Together with the equivalence of categories of Example 6.2, pushouts for
node-attributed graphs essentially reduce to unification for their variable com-
ponents (due to the fact that Set as underlying category has pushouts):

Corollary 6.4 A span B F� A G-C in the category SNAGΣ of node-attri-
buted graphs (as sigSNAGΣ structures) has a pushout if FV and GV, as substi-
tutions, have a pushout.

7 DPO Transformation with Substituting
Homomorphisms

Most DPO approaches to attributed graph transformation insist that the “data
algebra” supplying the attribute values remains unchanged by transformation. In
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contrast, our approach has the data algebra generated by a monad from selected
carrier sets — most typically, the data algebra is the term algebra of the variable
carrier set. And since variables are just elements of one of the carrier sets, adding
and deleting variables is as easy as adding and deleting nodes and edges.

For rewriting of symbolically attributed graphs, we organise the variable set
VG of the gluing graph as a coproduct VG = TG + RG of

– the set TG of transfer variables, and
– the set RG of replacement variables.

We demand that

– the graph parts (node and edge components) of the rule morphisms are
injective,

– the rule morphisms map transfer variables injectively to variables,
– all replacement variables occur in attributes of graph items.

A (rule) morphism satisfying these conditions is called rigid.
For human-oriented presentation, and for simplifying the technical arguments

below, the transfer-variable parts of the rule morphisms, namely ϕL,T : TG →
TΣ VL and ϕR,T : TG → TΣ VR, will be subset inclusions, with TG = VL ∩VR.
In the following example DPO drawing, we explicitly list the variable set for
each graph, and the variable component (substitution) for each homomorphism
(but we do not indicate the obvious node and edge mappings for the application
span A� H -B).

x 7→ a+ b
y 7→ 2 · b

F

a+ b

2 · b
{a, b, c}

A

F

a · c

x 7→ a+ b
y 7→ 2 · b
r1 7→ r1
r2 7→ r2

r1

r2

{a, b, c, r1, r2}

F

a · c

x 7→ a+ b
y 7→ 2 · b
d 7→ d

G

2 · b+ d

a+ b− d
{a, b, c, d}

B

F

a · c

H

x 7→ x
y 7→ y
r1 7→ y + d
r2 7→ x− d

ϕR

a 7→ a
b 7→ b
c 7→ c
r1 7→ 2 · b+ d
r2 7→ a+ b− d

x 7→ x
y 7→ y
r1 7→ x
r2 7→ y

ϕL

a 7→ a
b 7→ b
c 7→ c
r1 7→ a+ b
r2 7→ 2 · b

r1

r2

{x, y, r1, r2}

G

G

y + d

x− d

{x, y, d}

R

µ η ν

F

x

y

{x, y}

L

ψL ψR

Here, the transfer variables are x , and y , and the replacement variables are r1
and r2; the latter are mapped to different terms on the two rule sides, thus
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implementing “re-attribution”. Furthermore, variable d is “added by the RHS”;
if the host graph H had already contained a variable d , then the d of the RHS
would have been mapped to some fresh variable in the result graph B .

Note that ϕL is not a monomorphism in the category SNAGΣ of Def. 5.2:
Consider a graph Z with empty node and edge sets and with variable set {z},
and homomorphisms

– λ1 : Z → G with λ1,V (z ) = x and
– λ2 : Z → G with λ2,V (z ) = r1,

then λ1 #ϕL = λ2 #ϕL, but λ1 6= λ2. (The homomorphism ϕR “accidentally”
happens to be a monomorphism, but it would not be one if, e.g., x − d were
replaced with x−1. See Appendix A for more information about monomorphisms
in categories of substitutions.)

Although the replacement variables in the example above correspond to un-
defined labelling in, e.g., [HP12], this is not their only possible use; replacement
variables can also occur deeper in the term structure of graph item attributes.
This could be used for example to emulate multiple attributes via record-valued
single attributes, and then replacing selected attributes could employ gluing
nodes with attributes like “pair(x , r1)” or even “〈a1 7→ x , a2 7→ r1, a3 7→ π · r2〉”.

Existence of a pushout complement in the category SNAGΣ requires, besides
the conventional gluing condition for the graph part, the following additional
clause for the attribution part:

Definition 7.1 (Variable gluing condition) Each deleted variable (i.e., each
variable in VL −VG) is mapped by the matching µ to a variable in A that does
not occur in attributes outside the image of the deleted part of L (which is the
“dangling” aspect), and also does not occur in the result of µV for any other
variable (which is the “identification” aspect).

The pushout complement is obtained via the following steps:

– The graph part (nodes and edges) is constructed as the pushout complement
of the graph part of G ϕL-L µ-A.

– We then calculate a least unifier γ : RG → TΣ RG that simultaneously
unifies (without instantiating any variables of A) all pairs

(
µV (attrG(n1)), µV (attrG(n2))

)

for different preimages n1 6= n2 ∈ NG of nodes identified by µ, that is, with
and µN (ϕL,N (n1)) = µN (ϕL,N (n2)). Such a least unifier exists since the
matching µ proves unifiability.

– The variable set HV is the disjoint union of the preserved variables of A,
that is, VP := VA − µV (VL − VG), with the replacement variables of RG

that occur in the range of γ. (Variables that have been unified away must
be removed.)
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– For the attribution function, we then define (note that γ and µV replace
disjoint sets of variables):

attrH (n) =

{
γ (µV (attrG(m))) if n = ηN (m) with m ∈ NG

attrA(ψL,N (n)) if ψL,N (n) /∈ µN (NL)

– The substitution ηV is the identity on replacement variables, and coincides
with µV on transfer variables.

– The substitution ψL,V is the identity on preserved variables, and coincides
with ϕL,V #µV on replacement variables.

Commutativity ηV #ψL,V = ϕL,V #µV is then trivial; the attribute preservation
properties

ηN
., attrH = attrG # ηV and ψL,N

., attrA = attrH #ψL,V

are trivial when γ is trivial (that is, when µN does not identify any nodes), and
in general require careful analysis for the different variable sets.

The variable gluing condition (Def. 7.1) is essential to show the universality

property of the cospan L µ-A ψL� H ; altogether we obtain:

Theorem 7.2 (Existence and uniqueness of the pushout-complement)
For G ϕL-L µ-A in the category SNAG, if ϕL is a rigid morphism, then a

pushout complement G η-H ψL-A exists iff the extended gluing condition is
satisfied. If a pushout complement exists, it is unique up to isomorphism.

Since the category SNAG does not have all pushouts, the right-hand side of a
rule might contribute additional application conditions. Now we define a SNAG-
transformation rule to be a span L ϕL� G ϕR-R of rigid SNAG-homomorphisms.
With that restriction, it is easy to see that right-hand side pushouts always ex-
ist at least if the matching µ does not identify any nodes. In the case of node
identification via µ, the extended gluing condition is only sufficient for construc-
tion and well-definedness of the pushout complement; for the construction of the
result graph, the following additional condition is necessary:

– Attribute identification condition: There is a unifier δ : VR → TΣ VR that
simultaneously unifies all pairs

(
µV (attrR(ϕR,N (n1))), µV (attrR(ϕR,N (n2)))

)

for different preimages n1 6= n2 ∈ NG of nodes identified by µ, that is, with
and µN (ϕL,N (n1)) = µN (ϕL,N (n2)).

Theorem 7.3 (Existence of direct derivation) For A µ� L ϕL� G ϕR-R
in the category SNAG, if ϕL and ϕR are rigid morphisms and the attribute identi-
fication condition is satisfied in addition to the gluing condition for G ϕL-L µ-A,
then the usual double-pushout diagram for a direct derivation from A via the
rule L ϕL� G ϕR-R and the matching µ can be constructed.

12



8 Comparison with Attributed Graph Transformation in
the Adhesive Approach

In the adhesive HLR approach to attributed graph transformation, presented in
detail in [EEPT06, Chapters 8–12], each attributed graph contains its own Σ-
algebra for attribute values. Attributes are associated with graph items (nodes
or edges) through special “attribute edges” that have a graph item as source
and an attribute value as target. This has the advantage that the source of
a matching needs to have only those attributes defined that are relevant for
the matching, but also has the disadvantage that “attribute names” require
separate mechanisms for distinguishing attributes belonging to different names
(achieved via “typing”, i.e., move to a slice category, in [EEPT06, Def. 8.7]), for
enforcing existence (achieved via “constraints” in [EEPT06, Section 12.1]), and
for enforcing uniqueness (apparently requiring tuning a global parameter of the
“constraint” mechanism, see [EEPT06, Example 12.2]).

For the implementation AGG, [EEPT06, p. 308] mentions that “AGG allows
neither graphs which are only partially attributed, nor several values for one type.
This restriction is natural, [...]. In the theory, this restriction can be expressed
by adding [...] constraints [...]”. We agree that “this restriction is natural”, and
we consider coalgebras a far more natural way to incorporate this restriction
into the theory of attributed graphs: Any number of attribution operators can
be added to a coalgebraic signature, each of these is then necessarily interpreted
(implemented) as a (conceptually separate) total function in all coalgebras for
that signature.

The typed attributed graph transformation rules of [EEPT06, Chapter 9] are
restricted to a “term algebra with variables” for attributes, and all three graphs
of a rule L� G -R share the same term algebra. Therefore, “[the] definition
of the match [L→ A] already requires an assignment for all variables” [EEPT06,
p. 183], including those that one might otherwise consider as “introduced in the
RHS”. The fact all horizontal morphisms are restricted to isomorphisms on the
value algebra implies that that algebra cannot be modified by transformations.
In particular, if the application graph contains a term algebra, it is not possible
to add or delete variables.

9 Conclusion and Outlook

The theory of coalgebras, where operations map carrier set elements to arbitrary
types constructed via functors from all carrier sets, provides inherent flexibility
for modelling of graph structures that is sorely missing from the theory of unary
algebras traditionally employed for modelling of graph structures in the “alge-
braic” approach to graph transformation. In particular, coalgebras can model
attributed graph structures effortlessly. In contrast, the non-unary value alge-
bras needed for practical applications of attribution form an alien element in
the traditional unary algebras modelling graph structures, and therefore require
complex auxiliary constructions to properly capture even the simple fact that
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attribution is a total function from (e.g.) nodes to attribute values, as explained
in the previous section.

While the traditional approach handles substitution (typically as a special
case of evaluation) via algebra homomorphisms, we use the approach of [Kah14]
to handle substitution via Kleisli composition, by factoring the coalgebra functor
over an appropriate monad.

In the current paper, we restricted our attention to the term monad, and
therefore only considered symbolic attribution with terms in more detail; due
to the fact that the set of variables is one of the carrier sets of our coalgebras,
adding and deleting variables via DPO transformations is essentially as easy as
adding and deleting nodes or edges. This facility of adding variables results in
a symbolic rewriting system that is closer in spirit to that of [OL10a] than to
the point of view of [EEPT06], where additional variables in the RHS need to
be instantiated as part of the rule application (and indeed already as part of the
matching, for technical reasons).

Even though the Kleisli category of the term monad does not have all pushouts
(since not all terms are unifiable), we still managed to obtain a rule concept with
an application condition that is an only slightly strengthened gluing condition,
and that guarantees that a DPO rewriting step can be constructed. Interest-
ingly, the rule sides, although injective on their graph parts, are not monomor-
phisms in our coalgebra category, so none of the currentM-adhesive,W-adhesive
[Gol12], orM,N -adhesive [HP12] approaches is directly applicable. The general
approach of e.g., [Gol12], should however still be applicable to DPO rewriting
in categories of monadic product coalgebras — the concrete instance of a W-
adhesive category of attributed graphs presented in [Gol12] (implicitly) uses, for
enabling attribute change, a partiality monad, which, like the term monad, is
a “guarded monad” [GLDM05]; we conjecture that guarded monads might be
used to unify the two approaches.

For future work, we therefore hope to identify an appropriate variant of
the adhesive HLR approaches that does not require monomorphisms for the rule
sides, and still supports typical HLR results. The results of Sect. 7 should then be
generalised to arbitraryM-F-product-coalgebra categories, which will probably
require monads with membership relation for the gluing condition.

Besides the DPO-based HLR approaches, we also plan to investigate apply-
ing to monadic product coalgebras for example also the sesqui-pushout (SqPO)
approach of [CHHK06], which is aplied to attributed graph transformation in
[DEPR14]. While the approach of Sect. 7 can only delete variables that are
matched to variables, sesqui-pushout rewriting should give us more flexibility
there. It may even be advantageous to explore applying the fibred apprach to
rewriting [Kah97], as this provies a principled approach to distinguish the dif-
ferent ways substitution and/or partiality are employed in the horizontal versus
the vertical arrows of “double-square rewriting”.

We also plan to investigate moving from term algebras to more general alge-
bras as target types for attributions.
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A Monomorphisms in Substitution Categories

Let TΣ denote the term functor for signature Σ, that is, TΣ X is the set of
Σ-terms with elements of set X as variables. Let FV(t) denote the set of (free)
variables occurring in term t .
TΣ is an endofunctor on the category Set , and naturally extends to a monad.

Substitutions, that is, functions X → TΣ Y , are morphisms in the Kleisli cate-
gory of the term monad TΣ , and therefore compose via Kleisli composition which
is defined for arbitrary F : X → TΣ Y and G : Y → TΣ Z as follows, where
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µTΣ
: ∀A : TΣ (TΣ A)→ TΣ A is the “join” natural transformation of the term

monad:
F # G = F ., TΣ G ., µTΣ

Monomorphisms

In any monad, if the “return” natural transformation produces monomorphisms
(which it does for TΣ), then monomorphisms in the Kleisli category of this
monad are also monomorphisms in the underlying category. Monomorphisms
F of the underlying category that are preserved by the monad functor give rise
to monomorphisms F ., η in the Kleisli category.

The term functor preserves monomorphisms: An injective variable mapping
F : V1 → V2 gives rise to an injective term mapping TΣ F : TΣ V1 → TΣ V2

that only renames variables. The resulting substitution F ., η : V1 → TΣ V2 is
an injective variable renaming, which is easily seen to be a mono also in the
category of substitutions.

The category of substitutions has pushouts along such variable renamings;
these pushouts implement name-clash-avoiding extension of the domain of sub-
stitutions.

Monomorphisms in the category of substitutions cannot map any variables
to ground terms. For σ, being a monomorphism in the category of substitutions
means application of σ does not unify any two different terms, which is not
easy to check directly. However, we can show that monomorphisms in the Kleisli
category of the term monad are those substitutions that do not identify variables
with different terms (for finite substitutions, this condition directly translates
into a decision procedure):

Theorem A.1 A substitution σ : V1 → TΣ V2 is a monomorphism in the
category of substitutions iff for every variable v : V1 and every term t : TΣ V1,
we have:

σ v = σ t ⇒ v = t .

Proof. “⇒” follows directly by applying the monomorphism property to the two
terms v and t .
“⇐”: Assume that σ satisfies the given condition. To show that σ is a monomor-
phism in the category of substitutions it suffices to show that for any two terms
t , u : TΣ V1 with σ t = σ u, we have t = u. Since this is actually equiva-
lent to restricting V0 to a one-element set, it suffices to show that for all terms
t1, t2 : TΣ V1 with σt1 = σt2 we have t1 = t2.

– If t = v is a variable, then σ v = σt = σ u, from which the given property
yields v = u. (The case where u is a variable is analogous.)

– If t = f (t1, . . . tn) and u = g(u1, . . . un), then σt = σu implies f = g and
σ ti = σ ui , from which the induction hypothesis yields ti = ui for all i ,
implying t = u.

17



An interaction net encoding of Gödel’s System T

Ian Mackie and Shinya Sato

Abstract. The graph rewriting system of interaction nets has been very
successful for the implementation of the lambda calculus. In this paper
we show how the ideas can be extended to encode Gödel’s System T—the
simply typed λ-calculus extended with numbers. Surprisingly, using some
results about System T , we obtain a very simple system of interaction
nets that is significantly more efficient for the evaluation of programs.

1 Introduction

Gödel’s System T [7] is the simply typed λ-calculus, with function and prod-
uct types, extended with natural numbers. It is a very simple system, yet has
enormous expressive power—well beyond that of primitive recursive functions.

Interaction nets [9] are a model of computation, based on graph rewriting.
They are user defined rewrite systems and because we can write systems which
correspond to term rewriting systems we can see them as specification languages.
But, because we must also explain all the low-level details (such as copying and
erasing) then we can see them as a low-level operational semantics or more
specifically, as an implementation language. Supporting this latter point, we
remark that in general graph rewriting locating (by graph matching) a reduction
step is considered an expensive operation, but in interaction nets there is a very
simple mechanism to locate a redex (called an active pair in interaction net
terminology), and there is no need to use expensive matching algorithms. There
are interesting aspects of interaction nets for parallel evaluation—we will hint
at some of these aspects later in the paper.

Over the last years there have been several implementations of the λ-calculus
using interaction nets. These include optimal reduction [8], encodings of exist-
ing strategies [12, 15], and new strategies [13, 14]. One of the first algorithms to
implement Lévy’s [11] notion of optimal reduction for the λ-calculus was pre-
sented by Lamping [10]. Asperti et al. [3] devised BOHM (Bologna Optimal
Higher-Order Machine) building on the ideas of Lamping.

The purpose of this paper is to add to this list of interaction net imple-
mentations and to bring together on one hand the successful study of encoding
λ-calculus and related systems into interaction nets mentioned above, together
with the result that Gödel’s System T can be encoded with the linear λ-calculus
and an iterator [2]. Specifically, there are redundancies in System T—copying
and erasing can be done either by the iterator or by the λ-calculus. We can re-
move the copy and erasing power of the λ-calculus, and still keep the expressive
power. Taking this further, we can also get primitive recursive functions as a
subset of this system. The key motivation for bringing these works together is
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that the linear λ-calculus can be very easily encoded into interaction nets, and
therefore there is a hope for a very efficient implementation of this language.

Overview. The rest of this paper is structured as follows. In the next section we
recall the basic notations of interaction nets, to fix notation, and also give the
definition of linear System T . In Section 3 we give a compilation of the calculus
into interaction nets and give the dynamics of the system together with some
examples. In Section 4 we discuss the use of this work, and finally we conclude
in Section 5.

2 Background

2.1 Interaction nets

In the graphical rewriting system of interaction nets [9], we have a set Σ of
symbols, which are names of the nodes in our diagrams. Each symbol has an arity
ar that determines the number of auxiliary ports that the node has. If ar(α) = n
for α ∈ Σ, then α has n + 1 ports: n auxiliary ports and a distinguished one
called the principal port.

α

· · ·x1 xn

Nodes are drawn variably as circles, triangles or squares. A net built on Σ is
an undirected graph with nodes at the vertices. The edges of the net connect
nodes together at the ports such that there is only one edge at every port. A
port which is not connected is called a free port.

Two nodes (α, β) ∈ Σ×Σ connected via their principal ports form an active
pair, which is the interaction nets analogue of a redex. A rule ((α, β) =⇒ N)
replaces the pair (α, β) by the net N . All the free ports are preserved during
reduction, and there is at most one rule for each pair of agents. The following
diagram illustrates the idea, where N is any net built from Σ.

α β
...

...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

The most powerful property of this graph rewriting system is that it is one-
step confluent: the order of rewriting is not important, and all sequences of
rewrites are of the same length (in fact they are permutations). This has practical
consequences: the diagrammatic transformations can be applied in any order, or
even in parallel, to give the correct answer.
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2.2 System T
In this section we recall the main notions of Gödel’s System T . This is a func-
tional calculus, or an applied λ-calculus, with function and product types and
natural numbers. Intuitively, we can think of it as a minimal higher-order lan-
guage that is an extension to the simply typed λ-calculus (allowing numbers to
be represented rather than through encodings). From an alternative perspective,
it is a language that has greater computational power than primitive recursive
functions (we can define Ackermann’s function for instance).

We refer the reader to [7] for a detailed description of System T . In [2] it was
shown that there are redundancies in this calculus: copying and erasing can be
done either in the λ-calculus or using the iterator. This lead to a much simpler
presentation using the linear λ-calculus. In this paper we simplify further by
introducing pattern matching. There is nothing deep in this step, but it allows
us to present the same computational power as System T in a very simple syntax.
In the following we assume familiarity with the λ-calculus [4], and also some basic
recursion theory.

Table 1 summarises the syntax of our linear version of System T . The first
four lines give the linear λ-calculus with pairs. The construct λp.t is the usual ab-
straction, extended to allow patterns of variables or pairs of patterns (as defined
at the bottom of the table). The remaining three rules define the syntax for con-
structing numbers and the iteration. We work with terms modulo α-conversion
as usual.

The notion of pattern requires a little explanation. When we write λp.t, if
the pattern p is a variable, say x, then we have the usual abstraction. However,
we allow richer patterns built from pairs. It is through these patterns that we
are able to access the components of the pairs constructed in the syntax (so we
do not need explicit projection functions).

In Figure 1 we give the typing rules for this calculus. We write judgements
as p1 : A1, . . . , pn : An ` t : B. The typing rules capture the linear variable con-
straints in an alternative way. We remark that we have used the linear notation
for types as they are all linear functions.

Our version of linear System T has a number of useful properties: it is conflu-
ent, strongly normalising and reduction preserves types. Reduction also preserves
the variable constraints, and reduction is adequate to give normal forms for pro-
grams of type nat. The following defines the reduction, and we explain some
concepts below.

Definition 1 (Reduction). The reduction rules for calculus are given below:

Reduction Condition
(λp.t)v −→ [p� v].t fv(v) = ∅
iter (S t) u v −→ iter t (vu) v fv(v) = ∅
iter 0 u v −→ u fv(v) = ∅

The construct [p� v].t is a matching operation, defined as:

[x� v].t −→ t[v/x]
[〈p, q〉 � 〈t, u〉].t −→ [p� t].[q � u].t
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Terms Variable Constraint Free Variables (fv)

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λp.t bv(p) ⊆ fv(t) fv(t) r bv(p)

〈p, q〉 fv(p) ∩ fv(q) = ∅ fv(p) ∪ fv(q)

0 − ∅
S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)
fv(t) ∩ fv(v) = ∅

Pattern Variable Constraint Bound Variables (bv)

x − {x}
〈p, q〉 bv(p) ∩ bv(q) = ∅ bv(p) ∪ bv(q)

Table 1. Terms

Context

(Var)
x : A ` x : A

Γ, p : A, q : B ` t : C
(Pattern Pair)

Γ, 〈p, q〉 : A⊗B ` t : C

Γ, p : A, q : B,∆ ` t : C
(Exchange)

Γ, q : B, p : A,∆ ` t : C

Logical Rules:

Γ, p : A ` t : B
(−◦Intro)

Γ ` λp.t : A−◦B
Γ ` t : A−◦B Γ ` u : A

(−◦Elim)
Γ ` tu : B

Γ ` t : A ∆ ` u : B
(Pair)

Γ,∆ ` 〈t, u〉 : A⊗B
Numbers:

(Zero)
Γ ` 0 : nat

Γ ` t : nat
(Succ)

Γ ` S t : nat
Γ ` t : nat ∆ ` u : A Θ ` v : A−◦A

(Iter)
Γ,∆,Θ ` iter t u v : A

Fig. 1. Linear System T
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Substitution is a meta-operation defined as usual, and reductions can take place
in any context. Matching forces evaluation of terms, and will always succeed.
The conditions on the rules are used to preserve the linearity of them terms.

The matching operation is inspired by that of the ρ-calculus [5]. λp.t is a
generalized abstraction–it can be seen as a λ-abstraction on a pattern p instead
of a single variable. [p � u].t is a matching constraint denoting a matching
problem p� u whose solutions will be applied to t.

2.3 Examples

Here we give a few examples to illustrate how to use the syntax and what pro-
grams look like.

– Addition, multiplication and exponentiation can be defined as:

add = λmn.iter m n (λx.Sx)
mult = λmn.iter m 0 (add n)
exp = λmn.iter n (S 0) (mult m)

Note in particular that each function satisfies the linearity constraints.
– When we need to copy of erase, we can do that as shown in the following

examples for numbers:

C = λx.iter x 〈0, 0〉 (λ〈a, b〉.〈Sa,Sb〉)
fst = λ〈n,m〉.iter m n (λx.x)

Where C : nat−◦ nat⊗ nat, and fst : nat⊗ nat−◦ nat.
– Ackermann’s function is a standard example of a non primitive recursive

function:
ack(0, n) = S n
ack(S n, 0) = ack(n, S 0)
ack(S n,S m) = ack(n, ack(S n,m))

In a higher-order functional language, there is an alternative definition that
we can write in our syntax:

ack = λm.λn.(iter m (λx.S x) (λxy.iter (S y) (S 0) x))n

3 Interaction net encoding

In this section we give a translation T (·) of linear System T terms into interaction
nets. A term t with fv(t) = {x1, . . . , xn} will be translated as a net T (t) with
the root edge at the top, and n free edges corresponding to the free variables:

T (t)

· · ·
x1 xn
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The labelling of free edges is just for the translation (and convenience), and
is not part of the system. The agents that need for this compilation will be
introduced on demand, and we give the interaction rules later in the section. We
will occasionally make some assumptions about the order of the free edges to
make the diagrams simpler below.

Variable. When t is a variable, say x, then T (t) is translated into an edge:

x

Abstraction. If t is an abstraction, say λp.t′, then there are two alternative
translations of the abstraction, which are given as follows:

λc

Tp(p) T (t′)

· · · · · ·

λ

T (t′)Tp(p)

b b v

x1 xn

r r

In these diagrams, we use an auxiliary function for the translation of patterns
Tp(p) which is given by the following two rules.

x

Tp(x)

O

Tp(p) Tp(q)
· · · · · ·
Tp(〈p, q〉)

If p is a variable, then it is translated into an edge. Otherwise, if it is a pair
pattern, then it is translated as shown in the right hand diagram above.

Returning to the compilation of abstraction, in the first case, shown on the
left in the above diagram, is when fv(λp.t′) = ∅. Here we use an agent λc to
represent a closed abstraction and we explicitly connect the occurrence of the
variable of the body of the abstraction to the λc agent.

The second case, shown on the right, is when fv(λp.t′) = {x1, . . . , xn}. Here
we introduce three different kinds of agent: λ of arity 3, for abstraction, and two
kinds of agent representing a list of free variables. An agent b is used for each
free variable, and we end the list with an agent v. The idea is that there is a
pointer to the free variables of an abstraction; the body of the abstraction is
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encapsulated in a box structure. We assume, without loss of generality, that the
(unique) occurrence of the variable x is in the leftmost position of T (t′).

It is worth noting that a closed term will never become open during reduction,
but crucially for this system to work, terms may become closed during reduction.
The distinction between open and closed terms is crucial in the dynamics of the
interaction system that is given later.

Application. If t is an application, say uv, then T (uv) is given by the follow-
ing net, where we have introduced an agent @ of arity 2 corresponding to an
application.

@

T (t) T (u)

· · · · · ·

Pair. If t is a pair, say 〈u, v〉, then T (〈u, v〉) is given by the following net, where
we have introduced an agent ⊗ of arity 2 corresponding to a pair.

⊗

T (t) T (u)

· · · · · ·

Numbers. A number will be represented by a chain of successor agents (S),
terminating with a zero (0) agent. S has one auxiliary port, and 0 has none:

0 S

Iterator. To encode iter t u v we introduce one new agent as shown below. The
principal port of this agent points to the function v, because we must wait for
this to become a closed term before starting the interaction process.

It

T (t) T (u) T (v)

· · · · · · · · ·
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3.1 Example

We complete this section by giving an example to illustrate how represent pro-
grams as interaction nets. In Figure 2 we give the net corresponding to the
Ackermann function: T (λm.(iter m (λx.S x) (λxy.iter (S y) (S 0) x))) (note that
we have used η-conversion to slightly simplify this net)

�
c

�
c

�
c

It

S

�

S

It

S

b v

0

Fig. 2. Ackermann function

3.2 Reduction

In Figure 3 we summarise most of the interaction rules for this system. The first
rule deals with β-reduction, the next with pair pattern matching, and the next
four deal with substitution. The final three rules are for duplication and erasing,
where we use α to range over all other agents in the system. There are three
additional rules not in the figure that we explain in more details that implement
iteration. When iterator agent interacts with a closed abstraction we have the
following rule:
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λc

@

=⇒

O

⊗

=⇒

λc

b

=⇒
λc

v λ =⇒ λc

S

b

=⇒
S

0

b

=⇒
0

δ

δ

=⇒

α

· · ·

δ

=⇒

α α

δ δ· · ·

ε

α

· · ·

=⇒
ε · · · ε

Fig. 3. Interaction Rules
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It

λc

=⇒
Itc

This rule creates a new agent Itc that will interact with numbers. The agent also
holds on to the body and the variable edge of the abstraction. The two rules for
the Itc agent are as follows. The first rule is when we erase the function, and
connect the result to the base value.

Itc

0

=⇒ ε ε

The final rule is when we unfold one level of iteration. Here the function is
duplicated with δ agents, and one copy is applied to the base value as required.
Because the function being duplicated is closed, the duplication process is easily
proved to be correct.

Itc

S

=⇒
Itc

δ δ

These rules are all that we need to implement our linear System T . By
showing that we simulate the reduction rules for each case of the iterator we get
the following result.

Theorem 1. Let t be a closed linear System T term of base type (nat), then
T (t) ⇓ N , where N is a representation of a number (i.e., built from zero and
successors).

With a little extra effort, we could have given a translation of Gödel’s System
T directly to this system of interaction nets. However, we have significantly
simplified this encoding using a result from [1] stating that the linear version is
as powerful as the non-linear version.

Using a result of Dal Lago [6]: if we take the linear λ-calculus where iterated
functions must be closed by construction (i.e., fv(v) = ∅ in iter t u v) then
this system captures exactly the primitive recursive functions. If we are building
functions to iterate that must be closed by construction, then we no longer need
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the box structure to identify when a term becomes closed. The consequence of
this result here is that we can eliminate b v and λ agents, so that λc and @ are
sufficient to encode the linear λ-calculus.

Theorem 2. An interaction system built from the agents 0, S, It, Itc, δ, ε, λc,
and @ is complete for primitive recursive functions.

The encoding of the linear λ-calculus as a system of interaction nets is partic-
ularly simple, since substitution is implemented for free: β-reduction is a constant
time operation. This is a consequence of the fact that substitution is essentially
implemented as an assignment.

What we have achieved therefore is a very simple, no overheads, implemen-
tation of Gödel’s System T and primitive recursive functions.

4 Discussion

Very few people write programs with unary arithmetic (zero and successor).
Nevertheless, the same techniques are used to represent lists and other data-
structures. Our belief is that to understand complex languages and make them
efficient, it is fruitful to start with simple subsets and build up. This is the
approach we have taken in this paper.

Implementations of the λ-calculus are made complicated by the non-linear
aspects of the calculus. Using the linear λ-calculus with iterators gives a simpler
formulation of many algorithms, and even simpler when the iterated function
is closed. It is possible to use compilation techniques to transform a non-linear
algorithm in System T to our linear version, and also close some functions au-
tomatically. We will try to report on some of these aspects in the final version
of this paper.

5 Conclusion

We have given a very simple and efficient implementation of Gödel’s System T
using the graph rewriting formalism of interaction nets. The aim of this paper was
initially to apply some of the ideas used for the representation of the λ-calculus
in interaction nets to the the linear version of System T to investigate if the
resulting system provides a useful implementation technique. The experimental
results have confirmed that this is a useful approach.

This work is a building block in a larger programme of research to investigate
when interaction nets are useful for the evaluation of programs (either because
they are more efficient than standard techniques, of if they offer some other
advantage such as parallelism, small run-time system, etc.). A first step in this
direction is the study an extension with simple data-types, in particular lists,
and investigate if list processing algorithms can also give comparable results as
in this paper.
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Graph Isomorphism and Edge Graph
Isomorphism

Edel Sherratt
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3DB, Wales UK

Abstract. A chemical structure generator enumerates the structural
isomers that can be constructed from a collection of atoms or molecu-
lar fragments. The Abermol structure generator represents molecules and
fragments as coloured graphs, whose vertices stand for atoms, coloured by
the elements they represent, and whose edges represent bonds, coloured
to represent different kinds of bond. At each enumeration step Abermol
identifies and eliminates duplicate structures, which it then eliminates.
This entails transforming edge- and vertex-coloured graphs to simple
vertex-coloured graphs for isomorphism testing by McKay’s nauty soft-
ware. This paper presents the theorems underpinning isomorphism test-
ing in Abermol. The theorems argue that if two possibly disconnected
graphs have the same number of isolated vertices, and the same num-
ber of K3 connected components, then isomorphism of the edge graphs
corresponding to their remaining components is logically equivalent to
isomorphism of the original graphs. This allows direct representation of
molecular graphs as edge- and vertex-coloured graphs, and subsequent
transformation to equivalent edge graphs for isomorphism testing.

1 Introduction

A chemical structure generator takes as input atoms or molecular fragments or
both and generates an isomorph-free enumeration of the structural isomers that
can be constructed from its inputs. Molecules and fragments are represented as
graphs, where vertices stand for atoms, and edges for bonds.

The vertices are ‘coloured’ [1] by the atoms they represent, so that, for in-
stance, all vertices representing carbon atoms are coloured ‘C’. Edges can also
be coloured to represent different bond types. Alternatively, loop-free multi-
graphs [1], allow, for example, double or triple bonds to be represented as two
or three edges in the molecular graph.

The best known chemical structure generators include isomer generators and
generators of molecular graphs containing given substructures. For example,
Molgen [2,3] enumerates all the molecular graphs that correspond to a given for-
mula. This is also the case with Houdini[4], and the generator defined by Faulon
and Churchwell [5], which generates all structures matching a given signature.

These systems all generate complete molecules, which facilitates isomorphism
testing, for example by taking account of the characteristic vertex connectivities
of saturated molecular graphs [5] .
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If we also wish to generate disconnected molecules or fragments, representing
intermediate products in biochemical networks, then alternative strategies are
needed. This paper presents the key theorem that underpins the approach to
isomorphism testing used in Abermol, a chemical structure generator designed to
enumerate structures that represent complete molecules or molecule fragments.

A brief overview of isomorphism testing is provided below. This is followed
by a proof that subject to some readily checked conditions, isomorphism of two
edge graphs is logically equivalent to isomorphism of the parent graphs from
which they are derived. This allows transformation of simple edge- and vertex-
coloured molecular graphs to be transformed to simple vertex-coloured graphs
for isomorphism testing. The paper concludes with a short discussion of the
application of this result within Abermol.

2 Isomorphism testing for molecular graphs

Every structure generator needs a fast effective way to avoid generating duplicate
structures. If molecular graphs are not isomorphic, then they represent distinct
structures1

Abermol uses nauty [6,7], to test for isomorphism. Nauty provides very
fast reliable isomorphism testing for simple vertex coloured graphs. However,
molecular graphs have both edge and vertex colouring.

A loop-free multigraph [1] can be transformed to a simple graph by the
inclusion of dummy nodes to split duplicate edges into pairs of edges. Abermol
takes a different approach, transforming edge- and vertex-coloured graphs to
simple graphs called edge graphs before testing for isomorphism. Isomorphism of
two edge graphs implies isomorphism of original graphs provided some readily
checked conditions are met by graphs that contain three mutually adjacent edges.

This result is proved below for simple, uncoloured graphs, and its application
to structure generation is briefly outlined.

3 Definitions and Useful Facts

Some basic definitions and useful facts about graphs are stated below. These will
be used in proving the relationship between edge graph isomorphism and graph
isomorphism.

Throughout this and subsequent sections, all sets are assumed to be finite
and discrete, because this is true of molecular graphs.

Definition 1. Simple Graph
A simple graph G = (V,E) consists of a nonempty set V of vertices, and a

set E of unordered pairs of distinct elements of V called edges. If G = (V,E) is
a simple graph, then the undirected edge {a, b} of G is also written ab or ba.

1 Graphs that are isomorphic may nonetheless represent. distinct structures. For ex-
ample, N(H)(H) and O(H)(H) represent distinct structures although their molecular
graphs are isomorphic. Of course, this is not an issue if only fully connected struc-
tures containing all given elements are generated.
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Definition 2. Subgraph
Let G = (V,E) be a simple graph. A graph G′ = (V ′, E′) is a subgraph of G

iff V ′ ⊂ V and E′ ⊂ E

Definition 3. Partition
Let G = (V,E) be a simple graph. The list of graphs (G1 = (V1, E1), . . . , Gn =

(Vn, En) partitions G if (V1, . . . , Vn) partitions the set V and (E1, . . . En) parti-
tions the set E.

Definition 4. Image of a graph
Let G = (V,E) be a simple graph and let f be a function defined on V . Then

V f , Ef and Gf are the images of V , E and G under f , defined as follows:

V f = {f(a) | a ∈ V }
Ef = {f(a)f(b) | ab ∈ E}
Gf = (V f , Ef )

Definition 5. Connectivity
Let G = (V,E) be a simple graph. Let a ∈ V .

– The set of edges incident on a is A = {e ∈ E | a ∈ e}.
– If e, e′ ∈ E are two distinct edges of G, then e and e′ are coincident edges

iff they share a common vertex, that is, iff ∃ a ∈ V : e ∩ e′ = {a}
– The degree of a is | A |, the cardinality of the set of edges incident on a.
– a is an isolated vertex iff | A |= 0.
– Let b ∈ V . There is a walk from a to b in G iff a = b or there is a sequence

(a1, . . . , an) where a = a1, b = an and {a1a2, . . . , an−1an} ⊂ E
– G is connected iff ∀v, v′ ∈ V : there is a walk from v to v′ in G.
– The null graph G = (∅, ∅) is connected.
– A connected component of G is a connected subgraph G′ of G such that there

is no other connected subgraph of G that contains G′.
If G′ = (V ′, E′) is a connected subgraph of G, then G′ is a connected com-
ponent of G iff ∀v ∈ V \V ′, v′ ∈ V ′ : there is no walk from v to v′.

Definition 6. Edge preservation and Isomorphism
Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs.

1. A function f : V1 → V2 preserves the edges of G1 provided ab ∈ E1 ⇐⇒
f(a)f(b) ∈ E2.

2. G1 and G2 are isomorphic, written G1
∼= G2, iff there is a bijective function

f : V1 → V2 that preserves the edges of G1.

Definition 7. Edge graph
Let G = (V,E) be a simple graph, with no isolated vertices.
Then GE = (E,EE), where EE = {ee′ | ∃a ∈ V : e ∩ e′ = {a}}, is the edge

graph corresponding to G. GE is a simple graph whose vertices are the edges of
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G, and whose edges are the pairs of coincident edges of G. The edge graph is not
defined for graphs with isolated vertices 2.

Figure 1 illustrates a graph and some edges and vertices its corresponding edge
graph. The complete edge graph corresponding to the original graph is illustrated
in Figure 2.

C

C

C

C

C

C

N

C

Vertices in the edge graph

Edges in the edge graph

Vertex in the edge graph

O

Fig. 1. Edges and vertices in an edge graph. The double line in the upper right does
not indicate two edges, but an edge colouring indicating a chemical double bond. The
single lines are edges coloured to represent single bonds.

Fig. 2. An edge graph labelled with the original graph elements

2 This not a problem for chemical structure generation (nor for isomorphism testing),
as simple comparison is sufficient to determine whether or not two collections of
isolated vertices are ismorphic.
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Some useful facts are listed below. Their proofs are straightforward and are
not included.

1. The union of a collection of bijective functions is a bijective func-
tion
Let f1 : V1 → W1, . . . , fn : Vn → Wn be a list of bijective functions such
that ∀1 ≤ i, j ≤ n : i 6= j ⇒ Vi ∩ Vj = ∅ and Wi ∩ Wj = ∅. Then f :
V → W =

⋃
1≤i≤n fi is also a bijective function where V =

⋃
1≤i≤n Vi and

W =
⋃

1≤i≤nWi.
2. Any subset of a bijective function is a bijective function

Let f : V → W be a bijective function. Let g ⊂ f . Then g is a bijective
function.

3. Inverse image of a subset is the subset
Let f : V →W be a bijective function. Let A ⊂ V . Then (Af )f

−1

= A
4. Graph and Subgraph Isomorphism

Let G = (V,E) and G′ = (V ′, E′) be two simple graphs such that G ∼=
G′. Let f : V → V ′ be a bijective function such that {a, b} ∈ E ⇐⇒
{f(a), f(b)} ∈ E′. If H = (VH , EH) is a subgraph of G, then Hf = (V fH , E

f
H)

is a subgraph of Gf and H ∼= Hf .
5. Connected image of a connected subgraph

Let G = (V,E) and G′ = (V ′, E′) be two simple graphs such that G ∼=
G′. Let f : V → V ′ be a bijective function such that {a, b} ∈ E ⇐⇒
{f(a), f(b)} ∈ E′. If K = (VK , EK) is a connected subgraph of G, then

Kf = (V fK , E
f
K) is a connected subgraph of Gf

6. Partitioning a graph into its connected components
Let G = (V,E) be a simple graph. For all a, b ∈ V , let aRb denote the
relationship that is satisfied iff there is a walk from a to b.
Then R is an equivalence relation whose equivalence classes partition of G
into its connected components.

4 Graph Isomorphism and Edge Graph Isomorphism

This section proves that two graphs are isomorphic iff

– they have equal numbers of isolated vertices
– they have equal numbers of K3 components
– their connected components with two or more vertices have edge graphs that

are pairwise isomorphic

The proof is structured as follows.

1. First it is observed that two graphs are isomorphic iff their connected com-
ponents are pairwise isomorphic. This allows the rest of the proof to focus
on connected graphs. In particular, it means that isolated vertices, which
represent isolated atoms in a chemical structure, can simply be compared
when checking for duplicate structures.
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2. Different cases arise when we consider connected graphs with isomorphic
edge graphs. These are handled as follows.

Suppose G1 = (V1, E1) and G2 = (V2, E2) are two simple connected graphs,
where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1 .
That is, fE is a bijection that defines edge graph isomorphism.

2.1 Lemmas 1 and 2 deal with the case that the image under fE of the
set of edges incident on any given vertex in the G1 is the set of edges
incident on a given vertex of G2.

2.1.1 If the vertex of G2 is not unique, then each of the graphs
consists of two vertices connected by a single edge, and so
the graphs are isomorphic. (Lemma 1).

2.1.2 If the vertex of G2 is unique, then the bijection between
the edge graphs determines an edge-preserving bijection be-
tween the vertices of the original graphs, and so they are
isomorphic. (Lemma 2).

2.2 Lemmas 3 and 4 deal with the case where there is at least one vertex
of G1 whose incident edges are mapped by fE to a set of edges that
are not incident on a single vertex of G2.

In this case, fE either maps a K3 to an S4 subgraph or vice versa
(Lemma 3). Lemma 4 shows that the S4 and K3 subgraphs in fact
constitute the entire graph.

3. Theorem 1 proves that if two simple graphs with no isolated vertices have
isomorphic edge graphs, and if they have the same number of K3 connected
components, then they are isomorphic.

4. Finally, Theorem 2 shows that two simple graphs are isomorphic iff they have
the same number of isolated vertices, the same number of K3 components
and if their edge graphs are isomorphic.

4.1 Two Graphs are Isomorphic iff their Connected Components
are Pairwise Isomorphic

Let G = (V,E) and G′ = (V ′, E′) be two simple graphs.

Let (G1 = (V1, E1), . . . , Gn = (Vn, En)) partition G into its connected com-
ponents, and let (G′1 = (V ′1 , E

′
1), . . . , G′m = (V ′m, E

′
m)) partition G′ into its con-

nected components.

Then G ∼= G′ iff m = n and there is a permutation p of 1 . . . n such that
∀1 ≤ i ≤ n : Gi ∼= G′p(i).

This useful observation is easily proved and means that graph isomorphism
can be considered in terms of isomorphism of connected subgraphs. In particular,
isolated vertices can be compared, and edge graph isomorphism can be used when
dealing with graphs that have at least one edge.
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4.2 Incident edges on a vertex of one edge graph map to incident
edges on a vertex of isomorphic edge graph.

Suppose G1 and G2 have isomorphic edge graphs, and suppose fE is an edge-
preserving, bijective mapping between those edge graphs such that the image
under fE of the set of edges incident on any given vertex in the G1 is the set of
edges incident on a given vertex of G2.

Lemma 1 argues that if the vertex of G2 is not unique, then each of the
graphs consists of two vertices connected by a single edge, and so the graphs are
isomorphic.

If on the other hand, the vertex of G2 is unique, then the bijection between
the edge graphs determines an edge-preserving bijection between the vertices of
G1 and G2, and so they are isomorphic. (Lemma 2)

Lemma 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected
graphs, where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1 .
If ∀a ∈ V1 : ∃x ∈ V2 : AfE = X and ∃a ∈ V1;x, y ∈ V2 : x 6= Y and X =

AfE = Y
then G2 = ({x, y}, {xy}) and ∃b ∈ V1 : G1 = ({a, b}, {ab}) and so G1

∼= G2.

Proof Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected graphs,
where GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1 .
Let a ∈ V1, and let x, y ∈ V2 : x 6= y and X = AfE = Y and let e ∈ A
Then f(e) ∈ X and f(e) ∈ Y ; that is f(e) = xy, and so X = Y = {xy} =

AfE , but then A = (AfE )f
−1
E = ({xy})f−1

E = {e}. So ∃b ∈ V1 : e = ab and
A = {e} = {ab}

Also E1 = A, for let e′ ∈ E1. Then, since G1 is connected, eRe′.
Suppose e 6= e′

Then there is a sequence (e1e2, . . . , en−1en), where e = e1, en = e′ and
{e1e2, . . . , en−1en} ⊂ EE1

ee2 ∈ EE1 ⇒ fE(e)fE(e2) ∈ EE2
So x ∈ fE(e2) or y ∈ fE(e2), but since X = {xy} = Y , this means that

e2 ∈ {xy}, but e2 6= xy, so it cannot be the case that ee2 ∈ EE1 , and hence it
must be the case that e′ = e. So E1 ⊂ A, and since by definition A ⊂ E1, we
can conclude that E1 = A

So E1 = {ab}, and sinceG1 is connected, V1 = {a, b} and soG1 = ({a, b}, {ab})
Similarly, E2 = {xy}, V2 = {x, y} and G2 = ({x, y}, {xy})
Hence G1

∼= G2.

Lemma 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected
graphs, where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1 .
If ∀a ∈ V1 : ∃x ∈ V2 : AfE = X and ∀a ∈ V1;x, y ∈ V2 : X = AfE = Y ⇒

x = y, then the function f : V1 → V2 : a 7→ x ⇐⇒ AfE = X is bijective and
preserves the edges of G1, and so G1

∼= G2.
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Proof Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected graphs,
where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges ofGE1 , where
∀a ∈ V1 : ∃x ∈ V2 : AfE = X and ∀a ∈ V1;x, y ∈ V2 : X = AfE = Y ⇒ x = y.

Let f = {(a, x) ∈ V1 × V2 : AfE = X}
1. f is a function

Let (a, x), (a, y) ∈ f . Then AfE = X and AfE = Y . So X = AfE = Y
But ∀a ∈ V1;x, y ∈ V2 : X = AfE = Y ⇒ x = y.
So x = y and f is a function.

2. f is injective
Let (a, x), (b, x) ∈ f .
Suppose a 6= b. Then A = B, since AfE = X = BfE . But ∀e ∈ A : e ∈ B, so
A = B = {ab}. So X = {fE(ab)} = {xy} for some y ∈ V2
Also, if A = B = {ab} and AfE = BfE = X = {xy}, then Y = {xy}, for
let e ∈ Y : e 6= xy. Then e(xy) ∈ EE2 , and so (f−1E (e))(ab) ∈ EEa . and so
f−1E (e) ∈ A or f−1E (e) ∈ B, and f−1E (e) 6= ab
But since A = B = {ab} this is not the case, and so ∀e ∈ Y : f−1E (e) = ab.
so A = B = {ab}, and AfE = BfE = {xy}
But this means that AfE = X and AfE = Y with x 6= y which contradicts
∀y ∈ V2 : AfE = Y ⇒ x = y
So a = b and f is injective.

3. f is surjective
Let z ∈ V2, let e ∈ Z and let ab = f−1E (e). Let x ∈ V2 : AfE = X and let
y ∈ V2 : BfE = Y
That is (a, x), (b, y) ∈ f
Now x 6= y, since a 6= b and f is injective.
Also e ∈ AfE = X, since f−1E (e) = ab ∈ A. and e ∈ BfE = Y , since
f−1E (e) = ab ∈ B
So e = xy, and, since z ∈ e, z = x or z = y.
If z = x, then f(a) = z, and if z = y then f(b) = z.
In either case ∃a ∈ V1 : (a, x) ∈ f and so f is surjective.

4. f preserves the edges of G1

– Let ab ∈ E1

Let x ∈ V2 : AfE = X and let y ∈ V2 : BfE = Y
So f(a) = x and f(b) = y. Since a 6= b and since f is injective, x 6= y
Let e = fE(ab) ∈ E2. Then e ∈ (AfE ∩ BfE ) = X ∩ Y . So e = xy ∈ E2.
So ab ∈ E1 ⇒ f(a)f(b) ∈ E2

– Now let a, b ∈ V1 with f(a)f(b) ∈ E2

a 6= b since f(a) 6= f(b) and since f is a function. Let x = f(a) and let
y = f(b). Then xy ∈ V2 where X = AfE and Y = BfE . So f−1E (xy) ∈ E1.

But f−1E (xy) ∈ Xf−1
E (xy) = A. And f−1E (xy) ∈ Y f−1

E (xy) = B.
And since a 6= b, A 6= B and f−1E (xy) ∈ A ∩B = {ab}.
But xy = f(a)f(b) ∈ E2 and so f−1E (xy) ∈ E1. That is ab ∈ E1. So
f(a)f(b) ∈ E2 ⇒ ab ∈ E1.

So f : V1 → V2 is a bijective function that preserves the edges of G1 and
hence G1

∼= G2
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4.3 What if fE does not determine f?

This section concerns non-isomorphic graphs with isomorphic edge graphs. These
always involve K3 and S4 subgraphs, whose edge graphs are all K3. The problem
is illustrated in Figure 3. This situation occurs if G1 and G2 have isomorphic

Edge graph for K3

a

bc

d
ab

ac

ad

S4 Edge graph for S4

a

b

c

ac

ab bc

K3

Fig. 3. The edge graph for a K3 graph is a K3 graph, but so too is the edge graph for
an S4 graph.

edge graphs, but there is at least one vertex of G1 whose incident edges are
mapped by an edge-preserving bijection to edges of G2 that are not incident on
any given vertex of G2. Lemma 3 shows that this involves a mapping of a K3 to
an S4 subgraph or vice versa. Lemma 4 shows that the S4 and K3 subgraphs in
fact constitute all of G1 and G2.

Lemma 3. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected
graphs, where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1
If ∃ a ∈ V1 : ∀x ∈ V2 : AfE 6= X then either ∃a, b, c, d ∈ V1;x, y, z ∈ V2 : fE :

ab 7→ xy, ac 7→ xz, ad 7→ yz or ∃a, b, c ∈ V1;x, y, z, w ∈ V2 : fE : ab 7→ xy, ac 7→
xz, bc 7→ xw
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Proof Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected graphs,
where GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1
Let a ∈ V1 : ∀x ∈ V2 : AfE 6= X
Let ab ∈ A and let xy = fE(ab)
xy ∈ X and xy ∈ Y
Now X 6= AfE , and Y 6= AfE since 6 ∃x ∈ V2 : AfE = X
So (X 6⊂ AfE or AfE 6⊂ X) and (Y 6⊂ AfE or AfE 6⊂ Y )
That is (∃e ∈ AfE : e 6∈ X or ∃e ∈ X : e 6∈ AfE ) and (∃e′ ∈ AfE : e 6∈ Y or

∃e′ ∈ Y : e 6∈ AfE )

– Let e ∈ AfE : e 6∈ X
Now e 6= xy, since e 6∈ X, so f−1E (e) 6= ab. But f−1E (e) ∈ A, since e ∈ AfE .
So (f−1E (e))(ab) ∈ EE1 , and so e(xy) ∈ EE2
Hence e ∈ Y .

– Let e ∈ X : e 6∈ AfE
Now e 6= xy, since e 6∈ AfE and xy ∈ AfE So e(xy)inEE2 , and (ab)(f−1E (e)) ∈
EE1 .
Now f−1E (e) 6∈ A, so f−1E (e) ∈ B

Similarly, if e′ ∈ AfE and e′ 6∈ Y , then e′ ∈ X,
and if e′ ∈ Y : e′ 6∈ AfE , then f−1E (e′) ∈ B
This gives the following possibilities:

1. ∃e, e′ ∈ AfE : e ∈ Y, e 6∈ X, e′ ∈ X and e′ 6∈ Y . Let e, e′ ∈ AfE with e ∈ Y ,
e 6∈ X, e′ ∈ X and e′ 6∈ Y . Then e, e′ and xy are all distinct members of E2

since e ∈ Y but e′ 6∈ Y , e 6∈ X but xy ∈ X and e′ 6∈ Y but xy ∈ Y
∃c, d ∈ V1 : e = ac and e′ = ad, since f−1E (e), f−1E (e′) ∈ A
Also (f−1E (e))(f−1E (e′)) ∈ EE1 , and so ee′ ∈ EE2
So ∃z ∈ V2 : e = yz, e′ = xz, since e ∈ Y and e′ ∈ X
So ∃c, d ∈ V1, z ∈ V2 : f : ac 7→ xz, ad 7→ yz. Hence ∃ a, b, c, d ∈ V1;x, y, z ∈
V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz.

2. ∃e, e′ ∈ BfE : e ∈ X, e′ ∈ Y and e, e′ 6∈ AfE
Let e, e′ ∈ BfE : e ∈ X, e′ ∈ Y and e, e′ 6∈ AfE
Then e, e′ and xy are all distinct members of E2 since xy ∈ AfE , but e 6∈ AfE ,
xy ∈ AfE , but e′ 6∈ AfE and e ∈ X, but e′ 6∈ X
Now f−1E (e), f−1E (e′) ∈ B, so ∃c, d ∈ V1 : f−1E (e) = bc and f−1E (e′) = bd.
Also f−1E (e), f−1E (e′) ∈ EE1 , so ee′ ∈ EE2 and, since e ∈ X and e′ ∈ Y ,
∃z ∈ V2 : e = xz and e′ = yz
So ∃c, d ∈ V1, z ∈ V2 : f−1E : bc 7→ xz, bd 7→ yz
Hence ∃ a, b, c, d ∈ V1;x, y, z ∈ V2 : fE : ab 7→ xy, bc 7→ xz, bd 7→ yz, which,
renaming the bound variables a and b, is logically equivalent to ∃ a, b, c, d ∈
V1;x, y, z ∈ V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz,

3. ∃e, e′ ∈ X : e 6∈ AfE , e ∈ BfE , e′ ∈ AfE , and e′ 6∈ Y
Let e, e′ ∈ X : e 6∈ AfE , e ∈ BfE , e′ ∈ AfE , and e′ 6∈ Y
Then e, e′ and xy are all distinct members of E2 since e 6∈ AfE but e′ ∈ AfE ,
e 6∈ AfE but xy ∈ AfE and e′ 6∈ Y but xy ∈ Y
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∃z, w ∈ V2 : e = xw and e′ = xz, since e, e′ ∈ X
Also ee′ ∈ EE2 , and so (f−1E (e))(f−1E (e′)) ∈ EE1 . So ∃c ∈ V1 : f−1E (e) = bc and
f−1E (e′) = ac, since f−1E (e) ∈ B and f−1E (e′) ∈ A
So ∃c ∈ V1 : z, w ∈ V2 : f : ac 7→ xz, bc 7→ xw
Hence ∃a, b, c ∈ V1;x, y, z, w ∈ V2 : fE : ab 7→ xy, ac 7→ xz, bc 7→ xw

4. ∃e, e′ ∈ Y : e 6∈ X, e ∈ AfE , e′ 6∈ AfE , and e′ ∈ BfE
Let e, e′ ∈ Y : e 6∈ X, e ∈ Y, e ∈ AfE , e′ 6∈ AfE , and e′ ∈ BfE
Then e, e′ and xy are all distinct members of E2, and since e 6∈ X but
xy ∈ X, e′ 6∈ AfE but xy ∈ AfE and e ∈ AfE but e′ 6∈ AfE ,
∃z, w ∈ V2 : e = yw and e′ = yz, since e, e′ ∈ Y
Also ee′ ∈ EE2 , and so (f−1E (e))(f−1E (e′)) ∈ EE1 . So ∃c ∈ V1 : f−1E (e) = ac and
f−1E (e′) = bc, since f−1E (e) ∈ A and f−1E (e′) ∈ B
Hence ∃a, b, c ∈ V1;x, y, z, w ∈ V2 : fE : ab 7→ xy, bc 7→ xz, ac 7→ yw
which, renaming the bound variables a and b, is logically equivalent to Hence
∃a, b, c ∈ V1;x, y, z, w ∈ V2 : fE : ab 7→ xy, ac 7→ xz, bc 7→ xw

Hence ∃a, b, c, d ∈ V1;x, y, z ∈ V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz or
∃a, b, c ∈ V1;x, y, z, w ∈ V2 : fE : ab 7→ xy, ac 7→ xz, bc 7→ xw

4.4 S4 subgraph of G1 maps to K3 subgraph of G2

Lemma 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected
graphs, where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1
If ∃a, b, c, d ∈ V1;x, y, z ∈ V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz

then either ∃w : V2 = {x, y, z, w} and G1
∼= G2, or V2 = {x, y, z}, G2 =

({x, y, z}, {xy, xz, yz}) and G1 = ({a, b, c, d}, {ab, ac, ad}).

Proof Let G1 = (V1, E1) and G2 = (V2, E2) be two simple connected graphs,
where | V1 |> 1, | V2 |> 1 and GE1 ∼= GE2 .

Let fE : E1 → E2 be a bijective function that preserves the edges of GE1
Let a, b, c, d ∈ V1;x, y, z ∈ V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz
Consider A,B,C,D,X, Y, Z in turn.

1. A = {ab, ac, ad}
For if e ∈ A\{ab, ac, ad}, then e(ab), e(ac), e(ad) ∈ EE1 and so (fE(e))(xy), (fE(e))(xz)), (fE(e))(yz) ∈
E2E .
So (x ∈ fE(e) or y ∈ fE(e)) and (x ∈ fE(e) or z ∈ fE(e)) and (y ∈ fE(e) or
z ∈ fE(e))
Now this is only satisfied if fE(e) ∈ {xy, xz, yz}. But fE(e) ∈ {xy, xz, yz} ⇒
e ∈ {ab, ac, ad} which contradicts e ∈ A\{ab, ac, ad}.
So A\{ab, ac, ad} = ∅ and A = {ab, ac, ad}

2. B ⊂ {ab, bc, bd}, C ⊂ {ac, bc, cd} and D ⊂ {ad, bd, cd}
Let e ∈ B\{ab}. Then e(ab) ∈ EE1 , and so (fE)(xy) ∈ EE2
Also, fE 6∈ {xy, xz, yz} since e 6∈ {ab, ac, ad}
So if x ∈ fE(e) then (fE(e))(xz) ∈ EE2 . So (ac)e ∈ EE1 , and, since e ∈ B\{ab},
e = bc.
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Similarly, if y ∈ fE(e), e = bd
Hence B ⊂ {ab, bc, bd}
By a similar argument, C ⊂ {ac, bc, cd} and D ⊂ {ad, bd, cd}

3. V1 = {a, b, c, d} and E1 ⊂ {ab, ac, ad, bc, bd, cd}
a, b, c, d ∈ V1 since ab, ac, ad ∈ E1

Suppose v ∈ V1\{a, b, c, d}
Then, since G1 is connected, ∃v1, . . . vn ∈ V1 such that v1 ∈ {a, b, c, d},
vn = v and ∀1 ≤ i < n : vivi+1 ∈ E1

Let j be the maximum value in 1 . . . n − 1 such that vj ∈ {a, b, c, d. This
maximum exists since v1 ∈ {a, b, c, d}, and vn = v 6∈ {a, b, c, d}
Now vjvj+1 ∈ E1 since ∀1 ≤ i < n : vivi+1 ∈ E1, and vjvj+1 ∈ A∪B∪C∪D,
since vj ∈ {a, b, c, d}, but vjvj+1 6∈ A ∪ B ∪ C ∪D, since A ∪ B ∪ C ∪D ⊂
{ab, ac, ad, bc, bd, cd} and vj+1 6∈ {a, b, c, d}
But this contradication means that V1\{a, b, c, d} = ∅, and, since a, b, c, d ∈
V1, V1 = {a, b, c, d}.
Moreover, E1 ⊂ {vw | v, w ∈ V1} = {ab, ac, ad, bc, bd, cd}.

4. If bc ∈ E1 or bd ∈ E1 or cd ∈ E1, then G1
∼= G2

If bc ∈ E1, then (bc)(ab), (bc)(ac) ∈ EfE1 and so (fE(bc))(xy), (fE(bc))(xz) ∈
EfE2
So x ∈ fE(bc) or (fE(bc)) = yz
Now fE(bc) 6= yz, since bc 6= ad So x ∈ fE(bc), but fE(bc) 6∈ {xy, xz}, since
bc 6∈ {ab, ac} So ∃w ∈ V2{x, y, z} : fE(bc) = xw
Similarly, if bd ∈ E1, then ∃w′ ∈ V2 : fE(bd) = yw′

Moreover, if bc, bd ∈ E2, and if fE(bc) = xw and fE(bd) = yw′, then w = w′

For suppose bc, bd ∈ E1. Then (bc)(bd) ∈ EE1 So (xw)(yw′) ∈ EE2 and so
w = w′

So if bc, bd ∈ E1, then ∃w ∈ V2 : fE(bc) = xw and fE(bd) = yw.
Similarly, if bc, cd ∈ E2 then ∃w ∈ V2 : fE(bc) = xw and fE(cd) = zw
and if bd, cd ∈ E2 then ∃w ∈ V2 : fE(bc) = yw and fE(cd) = zw and if
bc, bd, cd ∈ E2 then ∃w ∈ V2 : fE(bc) = xw, fE(bc) = yw and fE(cd) = zw
Now E1 ⊂ {ab, ac, ad, bc, bd, cd}, and {ab, ac, ad} ⊂ E1

Suppose bc ∈ E1 and bd, cd 6∈ E1. That is, suppose E1 = {ab, ac, ad, bc}.
Then EfE1 = {xy, xz, yz, xw} = E2

Also V2 = {x, y, z, w} = {α ∈ e | e ∈ E2}, since G2 is connected.
SoG1 = ({a, b, c, d}, {ab, ac, ad, bc}) andG2 = ({x, y, z, w}, {xy, xz, xw, yz}),
and the function f : a 7→ x, b 7→ y, c 7→ z, d 7→ w is a bijective function that
preserves the edges of G1 and so G1

∼= G2

Similarly, if any one of bd, cd is in E1 then G1
∼= G2.

Now suppose bc, bd ∈ E1, but cd 6∈ E1. That is, suppose E1 = {ab, ac, ad, bc, bd}.
Then EfE1 = {xy, xz, yz, xw, yw} = E2, and V2 = {x, y, z, w}
SoG1 = ({a, b, c, d}, {ab, ac, ad, bc, bd}) andG2 = ({x, y, z, w}, {xy, xz, xw, yz, yw})
and again the function f : a 7→ x, b 7→ y, c 7→ z, d 7→ w is a bijective function
that preserves the edges of G1 and so G1

∼= G2

Similarly, if bc, cd or if bd, cd are in E1 then G1
∼= G2.

Finally, if E1 = {ab, ac, ad, bc, bd, cd}, then EfE1 = {xy, xz, xw, yz, yw, zw} =
E2 and once again the function f : a 7→ x, b 7→ y, c 7→ z, d 7→ w is a bijective
function that preserves the edges of G1 and so G1

∼= G2
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Hence if ∃a, b, c, d ∈ V1;x, y, z ∈ V2 : fE : ab 7→ xy, ac 7→ xz, ad 7→ yz
then either ∃w : V2 = {x, y, z, w} and G1

∼= G2,
or V2 = {x, y, z},G2 = ({x, y, z}, {xy, xz, yz}) andG1 = ({a, b, c, d}, {ab, ac, ad}).

4.5 Graph isomorphism and edge graph isomorphism

Theorem 1. Two graphs are isomorphic if their edge graphs are isomorphic
and if they have equal numbers of K3 components.

Let G = (V,E) and G′ = (V ′, E′) be two simple graphs with no isolated
vertices.

If GE ∼= (G′)E and
if | {H : H is a K3 subgraph of G} | = | {H ′ : H ′ is a K3 subgraph of G′} |,
then G ∼= G′.

Proof Let (GE1 = (V E1 , E
E
1 ), . . . , GEn = (V En , E

E
n)) partition GE into its connected

components, and let ((G′1)E = ((V ′1)E , (E′1)E), . . . , (G′m)Em = ((V ′m)E , (E′m)E))
partition (G′)E into its connected components.

Then, since GE ∼= (G′)E , m = n and there is a permutation p of (1, . . . n)
such that ∀1 ≤ i ≤ n : GEi ∼= (G′p(i))

E

Let p be a permutation of (1, . . . n) such that ∀1 ≤ i ≤ n : GEi ∼= (G′p(i))
E

Then ∀1 ≤ i ≤ n,Gi ∼= G′p(i), orGi = ({a, b, c, d}, {ab, ac, ad}) and (Gp(i))
′) =

({x, y, z}, {xy, xz, yz}), orGi = ({a, b, c}, {ab, ac, cd}) and (G′p(i)) = ({x, y, z, w}, {xy, xz, xw}),
since GEi ∼= (G′p(i))

E

That is, either Gi ∼= G′p(i), or else Gi is a K3 graph and G′p(i) is an S4 graph,
or vice versa.

Let k =| {Gi | Gi is a K3 graph and Gi ∼= G′i} |
and let l =| {Gi | Gi is a K3 graph and Gi 6∼= G′i}

Now k =| {Gi | Gi is a K3 graph and Gi ∼= G′i} |
=| {G′i | G′i is a K3 graph and Gi ∼= G′i} |

And so l = {G′i | G′i is a K3 graph and Gi 6∼= G′i}, since k + l =| {1 ≤ i ≤ n :
Gi is a K3 graph } | = | {1 ≤ i ≤ n : G′i is a K3 graph } |,

Hence | {Gi | Gi is K3 and G′i is S4} |=| {G′i | G′i is K3 and Gi is S4} |
So we can define a permutation q of 1 . . . n such that

– q(i) = p(i) if Gi ∼= G′i
– q(i) = p(j) and q(j) = p(i) for some j such that Gi is K3 and G′p(i) is S4,

and Gj is S4 and G′p(j) is K3.

But this means that (G1 = (V1, E1), . . . , Gn = (Vn, En)) is a partition of
G into its connected components, and (G′1 = (V ′1 , E

′
1), . . . , G′n = (V ′n, E

′
n)) is a

partition of G′ into its connected components, and q is a permutation of 1 . . . n
such that Gi ∼= G′i for all 1 ≤ i ≤ n, and so G ∼= G′

Theorem 2. Let G = (V,E) and G′ = (V ′, E′) be two simple graphs.
Let VI = {v ∈ V | v is isolated in G} and V ′I = {v ∈ V ′ | v is isolated in G′}.
Then G ∼= G′ iff
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– | VI |=| V ′ |.
– | {H : H is a K3 subgraph of G} | = | {H ′ : H ′ is a K3 subgraph of G′} |
– (V \VI , E)E ∼= (V ′\V ′I , E′)

Proof Partition G into into (VI , ∅) and (V \VI , E) and partition G′ into (V ′I , ∅)
and (V ′\V ′I , E′).

1. ⇐
(VI , ∅) ∼= (V ′I , ∅) since | VI |=| V ′ |.
Also, (V \VI , E) ∼= (V ′\V ′I , E′) since (V \VI , E)E ∼= (V ′\V ′I , E′)E and since
(V \VI , E) and (V ′\V ′I , E′) each contain the same number of K3 subgraphs.

Hence G ∼= G′.
2. ⇒

Suppose G ∼= G′ Let f : V → V ′ be a bijective function such that {a, b} ∈
E ⇐⇒ {f(a), f(b)} ∈ E′

– a is isolated in G iff f(a) is isolated in G′ and so | VI |=| V ′ |
– ab, ac and bc form the edges of a K3 subgraph of G iff f(a)f(b), f(a)f(c)

and f(b)f(c) form the edges of a K3 subgraph of G′. Hence (V \VI , E)
and (V ′\V ′I , E′) each contain the same number of K3 subgraphs.

– For every ab ∈ E, define fE : ab 7→ f(a), f(b)

Then fE : E → E′ is bijective, and ∀{e1, e2} ∈ EE , fE({e1, e2}) ∈ (E′)E

Hence (V \VI , E)E ∼= (V ′\V ′I , E′)

5 Application to Structure Generation

If the vertex colouring of each vertex in an edge graph is defined as a triple that
comprises the edge and vertex colours from the original graph, then this result
can be extended to coloured graphs in a straightforward way. This provides the
basis for transforming molecular graphs to simple graphs before passing them to
Nauty for isomorphism testing.

The alternative approach – namely to use multiple edges and dummy vertices
to represent different bond types – gives rise to smaller graphs (with fewer ver-
tices and edges) when dealing with fully connected structures containing mainly
single bonds.

The approach used in Abermol leads to smaller graphs when dealing with
structures containing different bond types, or structures that are not fully con-
nected. This is particularly useful during molecular structure generation, when
structures are typically not fully connected.

This approach also provides greater flexibility for representing different kinds
of bonds. For example, aromatic bonds are represented by an appropriate label,
which does not affect the representation of other bond types.
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6 Conclusion

The theorems underpinning a practical approach to isomorphism testing were
presented above.

Following the principles of orderly enumeration described by McKay [8],
Abemol starts with a set of bonds (graph edges) that represent fragments of
molecules. It computes all the ways in which the set can be extended by adding
one bond. The resulting collection is then reduced so that no two sets represent
isomeric molecules. The process is repeated for each of the new sets until no
further extension is possible.

At each stage in the process, all the sets of bonds have the same cardinality, so
that sets from previous stages cannot represent isomers of previously generated
molecules or fragments. At each stage, sets are also grouped to avoid testing
structures such as NH2 and H2O for isomorphism.

Isomorphism testing was carried out by nauty [6,7]. Since nauty deals with
simple vertex-coloured graphs, Abermol transforms the molecular graph so that
bonds are represented as coloured vertices, and bonds that share a common
atom are connected by simple edges. This requires special treatment of K3 and
S4 graphs, as exposed by the theorem above.

In this way, the theorems developed above have been used to facilitate a flex-
ible, extensible and intuitively appealing representation of molecular structures,
that also allows for efficient identification of duplicate molecules and fragments.
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Abstract. The bigraph embedding problem is crucial for many results
and tools about bigraphs and bigraphical reactive systems (BRS). There
are algorithms for computing bigraphical embedding but these are de-
signed to be run locally and assume a complete view of the guest and
host bigraphs, putting large bigraphs and BRS out of their reach. To
overcome these limitations we present a decentralized algorithm for com-
puting bigraph embeddings that allows us to distribute both state and
computation over several concurrent processes. Among various applica-
tions, this algorithm offers the basis for distributed BRS simulations
where non-interfering reactions are carried out concurrently.

1 Introduction

Bigraphical Reactive Systems (BRSs) [10,15] are a flexible and expressive meta-
model for ubiquitous computation. In the last decade, BRSs have been success-
fully applied to the formalization of a wide range of domain-specific calculi and
models, from traditional programming languages to process calculi for concur-
rency and mobility, from business processes to systems biology; a non exhaus-
tive list is [1, 3, 4, 6, 12, 13]. Recently, BRSs have found a promising applications
in structure-aware agent-based computing: the knowledge about the (physical)
world where the agents operate (e.g., drones, robots, etc.) can be conveniently
represented by means of BRSs [16, 20]. BRSs are appealing also because they
provide a range of general results and tools, which can be readily instantiated
with the specific model under scrutiny: simulation tools, systematic construction
of compositional bisimulations [10], graphical editors [7], general model check-
ers [18], modular composition [17], stochastic extensions [11], etc.

This expressive power stems from the rich structure of bigraphs, which form
the states of a bigraphic reactive system. A bigraph is a compositional data
structure describing at once both the locations and the logical connections of
(possibly nested) components of a system. To this end, bigraphs combine two
independent graphical structures over the same set of nodes: a hierarchy of places,
and a hypergraph of links. Intuitively, places can be used for representing physical
positions of agents, while links represent logical connections between agents. A
simple example is shown in Figure 1.

? Work partially supported by MIUR PRIN project 2010LHT4KM, CINA.
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Fig. 1. Forming a bigraph from a place graph and a link graph.
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Fig. 2. An abstract bigraphical machine.

Like graph rewriting [19], the behaviour of a BRS is defined by a set of
(parametric) reaction rules, which can modify a bigraph by replacing a redex
with a reactum, possibly changing agents’ positions and connections.

Bigraphical reactive systems can be run (or simulated) by the abstract ma-
chine depicted in Figure 2 (or variants of it). This machine is composed by two
main modules: the embedding engine and the reaction engine. The former is re-
sponsible of keeping track of every occurrence of the redexes into the machine
state. The latter is responsible of carrying out the reactions, in two steps: (a)
choosing an occurrence of a redex among those provided by the embedding engine
and (b) updating the machine state by performing the chosen rewrite operation.
The selection of the reaction is driven by user-provided execution policies.

Therefore, computing bigraph embeddings is a central issue in any implemen-
tation of a BRS abstract machine. The problem is known to be NP-complete [2],
and some algorithms (or reductions) can be found in the literature [8, 14, 21].
However, existing algorithms assume a complete view of both the guest and the
host bigraphs. This hinders the scalability of BRS execution tools, especially on
devices with low resources (like embedded ones). Moreover, in a truly distributed
setting (like in multi-agent systems [12]) the bigraph is scattered among many
machines; gathering it to a single “knowledge manager” in order to calculate
embeddings and apply the rewriting rules, would be impractical.

In this paper, we aim to overcome these problems, by introducing an al-
gorithm for computing bigraphical embeddings in distributed settings where
bigraphs are spread across several cooperating processes. This decentralized al-
gorithm does not impose a complete view of the host bigraph, but retains the
fundamental property of (eventually) computing every possible embedding for
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Fig. 3. Distributed bigraphical machine.

the given host. Thanks to the decentralized nature of the algorithm, this solution
can scale to bigraphs that cannot fit into the memory of a single process, hence
too large to be handled by existing implementations. Moreover, the algorithm
is parallelized: several (non-interfering) reductions can be identified and applied
at once. In this paper we consider distributed hosts only since guests are usually
redexes of parametric reaction rules and hence small enough to be handled even
in presence of scarce computational resources.

Thanks to this result we are able to define a decentralized variation of the
abstract bigraphical machine illustrated above. The architecture of this new
distributed bigraphical machine is sketched in Figure 3. Both computation and
states are distributed over a family of processes. Each process has only a partial
view of the global state and negotiates updates to its piece of the global bigraph
with its “neighbouring processes”. In order to simplify the exposition we assume
reliable asynchronous point-to-point communication between reliable processes.
These are mild assumptions for a distributed system and can be easily achieved
e.g. over unreliable channels.

Synopsis In Section 2 we briefly recall the notion of bigraphs and bigraphical
reactive systems. In Section 3 we recall the notion of bigraph embedding, intro-
duce the notion of partial embedding and study their ordering (which are at the
base of our algorithm). In Section 4 and Section 5 we describe the distributed
bigrapical machine and its components; especially the distributed algorithm for
solving the embedding problem at the core of this paper. Conclusions and final
remarks are discussed in Section 6.

2 Bigraphical reactive systems

In this section we briefly recall the notion of Bigraphical Reactive Systems (BRS)
referring the interested reader to [15]. The key point of BRSs is that “the model
should consist in some sort of reconfigurable space”. Agents may interact in
this space, even if they are spatially separated. This means that two agents
may be adjacent in two ways: they may be at the same place, or they may be
connected by a link. This leads to the definition of bigraphs as a data structure
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for representing the state of the system. A bigraph can be seen as an enriched
hyper-graph combining two independent graphical structures over the same set
of nodes: a hierarchy of places, and a hyper-graph of links.

Definition 1 (Bigraph [15, Def. 2.3]). Let Σ be a bigraphical signature (i.e. a
set of types, called controls, denoting a finite arity). A bigraph G over Σ is an
object (VG, EG, ctrlG,prntG, linkG) : 〈mG, XG〉 → 〈nG, YG〉 composed of two sub-
structures (cf. Figure 1): a place graph GP = (VG, ctrlG,prntG) : mG → nG and
a link graph GL = (VG, EG, ctrlG, linkG) : XG → YG. The set VG is a finite set
of nodes and to each of them is assigned a control in Σ by the control map
ctrlG : VG → Σ. The set EG is a finite set of names called edges.

These structures present an inner interface (composed by mG and XG) and
an outer one (nG, YG) along which can be composed with other of their kind as
long as they do not share any node or edge. In particular, XG and YG are finite
sets of names and mG and nG are finite ordinals.

On the side of GP , nodes, sites and roots are organized in a forest described by
the parent map prntG : VG]mG → VG]nG s.t. sites are leaves and roots are nG.

On the side of GL, nodes, edges and names of the inner and outer interface
forms a hyper-graph described by the link map linkG : PG ] XG → EG ] YG
which is a function from XG and ports PG (i.e. elements of the finite ordinal
associated to each node by its control) to edges EG and names in YG.

The dynamic behaviour of a system is described in terms of reactions of
the form a _ a′ where a, a′ are agents, i.e. bigraphs with inner interface 〈0, ∅〉.
Reactions are defined by means of graph rewrite rules, which are pairs of bi-
graphs (RL, RR) equipped with a function η from the sites of RR to those of
RL called instantiation rule. A bigraphical encoding for the open reaction rule
of the Ambient Calculus is shown in Figure 4 where redex and reactum are the
bigraph on the left and the one on the right respectively and the instantiation
rule is drawn in red. A rule fires when its redex can be embedded into the agent;
then, the matched part is replaced by the reactum and the parameters (i.e. the
substructures determined by the redex sites) are instantiated accordingly with η.

3 Partial bigraph embeddings

The following definitions are mainly taken from [9], with minor modification to
simplify the presentation of the distributed embedding algorithm (cf. Section 5).
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As usual, we will exploit the orthogonality of the link and place graphs, by
defining link and place graph embeddings separately and then combine them to
extend the notion to bigraphs. We then introduce partial bigraph embeddings,
define an ordering on them and study the atomic CPO⊥ structure presented by
the set of partial embeddings for any given pair of guest and host bigraphs. This
structure is fundamental for the algorithm we present in Section 5.

Link graph Intuitively an embedding of link graphs is a structure preserving map
from one link graph (the guest) to another (the host). As one would expect from
a graph embedding, this map contains a pair of injections: one for the nodes and
one for the edges (i.e., a support translation). The remaining of the embedding
map specifies how names of the inner and outer interfaces should be mapped into
the host link graph. Outer names can be mapped to any link; here injectivity
is not required since a context can alias outer names. Dually, inner names can
mapped to hyper-edges linking sets of points in the host link graph and such
that every point is contained in at most one of these sets.

Definition 2 (Link graph embedding [9, Def 7.5.1]). Let G : XG → YG
and H : XH → YH be two concrete link graphs. A link graph embedding φ :
G H is a map φ , φv ] φe ] φi ] φo (assigning nodes, edges, inner and outer
names respectively) subject to the following conditions:

(LGE-1) φv : VG� VH and φe : EG� EH are injective;
(LGE-2) φi : XG� ℘(XH ]PH) is fully injective: ∀x 6= x′ : φi(x)∩φi(x′) = ∅;
(LGE-3) φo : YG → EH ] YH in an arbitrary partial map;
(LGE-4) img(φe) ∩ img(φo) = ∅ and img(φi) ∩ img(φport) = ∅;
(LGE-5) φp ◦ link−1G

∣∣
EG

= link−1H ◦ φe;
(LGE-6) ctrlG = ctrlH ◦ φv;
(LGE-7) ∀p ∈ XG ] PG : ∀p′ ∈ (φp)(p) : (φh ◦ linkG)(p) = linkh(p′)

where φp , φi]φport, φh , φe]φo and φport : PG� PH is φport(v, i) , (φv(v), i)).

The first three conditions are on the single sub-maps of the embedding. Con-
dition (LGE-4) ensures that no components (except for outer names) are identi-
fied; condition (LGE-5) imposes that points connected by the image of an edge
are all covered. Finally, conditions (LGE-6) and (LGE-7) ensure that the guest
structure is preserved i.e. node controls and point linkings are preserved.

Place graph Like link graph embeddings, place graph embeddings are just a
structure preserving injective map from nodes along with suitable maps for the
inner and outer interfaces. In particular, a site is mapped to the set of sites and
nodes that are “put under it” and a root is mapped to the host root or node that
is “put over it” splitting the host place graphs in three parts: the guest image,
the context and the parameter (which are above and below the guest image).

Definition 3 (Place graph embedding [9, Def 7.5.4]). Let G : nG → mG

and H : nH → mH be two concrete place graphs. A place graph embedding
φ : G H is a map φ , φv]φs]φr (assigning nodes, sites and regions respectively)
subject to the following conditions:
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(PGE-1) φv : VG� VH is injective;
(PGE-2) φs : nG� ℘(nH ] VH) is fully injective;
(PGE-3) φr : mG → VH ]mH in an arbitrary map;
(PGE-4) img(φv) ∩ img(φr) = ∅ and img(φs) ∩ img(φv) = ∅;
(PGE-5) ∀r ∈ mG : ∀s ∈ nG : prnt∗Hφ

r(r) ∩ φs(s) = ∅;
(PGE-6) φc ◦ prnt−1G

∣∣
VG

= prnt−1H ◦ φv;
(PGE-7) ctrlG = ctrlH ◦ φv;
(PGE-8) ∀c ∈ nG ] VG : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prntH(c′);

where φf , φv ] φr and φc , φv ] φs.
Conditions in the above definition follows the structure of Definition 2, the

main notable difference is (PGE-5) which states that the image of a root can not
be the descendant of the image of another. Conditions (PGE-1), (PGE-2) and
(PGE-3) are on the three sub-maps composing the embedding; conditions (PGE-
4) and (PGE-5) ensure that no components are identified; (PGE-6) imposes
surjectivity on children and the last two conditions require the guest structure
to be preserved by the embedding map.

Bigraph Finally, bigraph embeddings can now be defined as maps being com-
posed by an embedding for the link graph with one for the place graph consis-
tently with the interplay of these two substructures. In particular, the interplay
is captured by a single additional condition ensuring that points in the image of
an inner names reside in the parameter defined by the place graph embedding
(i.e. are inner names or ports of some node under a site image).

Definition 4 (Bigraph embedding [9, Def 7.5.14]). Let G : 〈nG, XG〉 →
〈mG, YG〉 and H : 〈nH , XH〉 → 〈mH , YH〉 be two concrete bigraphs. A bigraph
embedding φ : G H is a map given by a place graph embedding φP : GP HP

and a link graph embedding φL : GL HL subject to the consistency condition:

(BGE-1) img(φi) ⊆ XH ] {(v, i) ∈ PH | ∃s ∈ nG : k ∈ N : prntkH(v) ∈ φs(s)}.

Partial bigraph embeddings In the following we relax the above definition to
allow partiality and formally represent intermediate steps of the algorithm we
present in Section 5. Basically, a partial bigraph embedding is a partial map
subject to the same conditions of a total embedding up-to partiality.

Definition 5 (Partial bigraph embedding). Let G : 〈nG, XG〉 → 〈mG, YG〉
and H : 〈nH , XH〉 → 〈mH , YH〉 be two concrete bigraphs. A partial bigraph
embedding φ : G H is a partial map subject, where defined, to the same
conditions of Definition 4.

Partial embeddings represent partial or intermediate steps towards a total
embedding. This is reflected by the obvious ordering given by the point-wise
lifting of the anti-chain order to partial maps. In particular, given two partial
embeddings φ, ψ : G H we say that:

φ v ψ 4⇐⇒ ∀x ∈ dom(φ)φ(x) 6= ⊥ =⇒ ψ(x) = φ(x). (1)
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This definition extends, for any given pair of concrete bigraphs G and H, to a
partial order over the set of partial bigraph embeddings of G into H. It is easy
to check that the entirely undefined embedding ∅ is the bottom of this structure
and that meets are always defined:

φ u ψ , λx.
{
φ(x) if φ(x) = ψ(x)

⊥ otherwise

Likewise, joins, where they exist, are defined as follows:

φ t ψ , λx.





φ(x) if φ(x) 6= ⊥
ψ(x) if ψ(x) 6= ⊥
⊥ otherwise

Clearly φ and ψ have to coincide where are both defined and their join φ t ψ is
defined iff it meets every condition in Definition 5.

4 State, overlay and reactions

This section illustrates how a bigraph is distributed between a processes family
and how it is maintained and updated. Firstly, we formalize the idea of a “bigraph
being distributed” and show how a partition of the system global state defines
a semantic overlay network. The rôle of this network is crucial for the embed-
ding algorithm since communication will follow this semantic driven structure.
Finally, we describe how reactions are carried out concurrently and consistently.

In the following, let Proc denote the family of processes forming the dis-
tributed machine under definition and let G be a generic concrete bigraph
(VG, EG, ctrlG,prntG, linkG) : 〈mG, XG〉 → 〈nG, YG〉 over a given signature Σ.

State partition Intuitively, a partition of the shared state G is a map assigning
each component of the bigraph G to the process in charge of maintaining it.

Definition 6 (State partition). A partition of (the shared state) G over Proc
is a map P : G → Proc assigning each component of G to some process. In
particular, P is given by the (sub)maps Pv, P e, P s, P r, P i, and Po on vertices,
edges, sites, roots, inner names, and outer names respectively. Every component
of G in the pre-image of a process is said to be held by that process. Ports are
mapped into the process holding their node i.e. P((v, i)) , P(v).

Then, the notion of adjacency for bigraph components can be lifted to the
family of processes along the given partition map. Here hyper-edges of the link
graph are considered as trees where the root and leaves are the hyper-edge handle
(i.e. edge or outer name) and all the points (i.e. ports or inner names) it connects.

Definition 7 (Adjacent processes). Let R,S ∈ Proc. The process R is said
to be adjacent (w.r.t. the partition P) to S whenever one of the following holds:
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(ADJ-P) there exists a node or site c s.t. P(c) = R and P(prntG(c)) = S;

(ADJ-L) there exists a point p s.t. P(p) = R and P(linkG(p)) = S;

(ADJ-R) there exist two roots r, r′ s.t. P(r) = R and P(r′) = S;

(ADJ-H) there exist two handles h, h′ s.t. P(h) = R and P(h′) = S.

In virtue of the adjacency being a symmetric relation, we will denote pairs of

adjacent processes by R
P� S and drop the partition when confusion seems un-

likely. Two (partial) embeddings or a process and a (partial) embedding are said
to be adjacent whenever their images are. The notation is extended accordingly.

The adjacency relation defines an undirected graph with vertices in Proc and
hence an overlay network NP. The overlay network bares a specific semantic
meaning since it reflects the adjacency of the bigraphical elements held by the
processes forming the network: two processes are adjacent if, and only if, they
hold components of the shared bigraphs G that are adjacent in G. Moreover, for
any two components of G, say c1 and c2, the shortest path in the overlay NP
between the processes P(c1) and P(c2) will never be greater than the shortest
path between c1 and c2 in G. The last observation is crucial to our purposes
since relates routing through the overlay NP with walks and visits of G used
e.g. to compute embeddings into G in non-distributed settings. Notice that the
restriction of NP to img(P) will always be connected.

Distributed reactions Let φ be an embedding of G into the bigraph shared by the
process in the system and let r : G _ G′ be a parametric rewriting rule for the
given BRS. Processes holding elements of G image through φ or in its parameters
have to negotiate the firing of r and coordinate the update of their state. The
negotiation phase is related to the specific execution policy and hence is left
out from the present work. The update phase involves a distributed transaction
and can be easily handled by established algorithms like two-phase-commit [5].
The embedding φ is selected among those published by the embedding engine
however, the distributed transaction is still necessary since this collection of
embeddings may be out of sync because of communication delays (cf. Section 5).

5 Distributed embedding

In this Section we present the main result of the paper: a decentralized algorithm
for computing bigraphical embeddings in the distributed settings outlined in
Section 4. Intuitively, each process running this algorithm maintains a collection
of partial embeddings for the guests it has to look for and cooperates with
its neighbouring processes (adjacency is lifted from bigraphs to processes) to
complete of refute them. For the sake of simplicity we assume that all processes
are given the same set of guests (e.g. the redexes of the rules of the underlying
BRS) and that this set is fixed over the time; however, the algorithm can be
readily adapted to work without these assumptions.
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Process structure Each process maintain, for each guest G, a suitable structure
ΓG where it stores the all partial embeddings of G involving its partial view of
the shared bigraph. Among these, there are all the total embeddings the process
believes available at a current time and which are exposed to the outside system
(e.g. the rewriting engine of the distributed bigraphical machine). Partial embed-
dings are decorated with some extra information to handle the non-monotonic
changes of this structure over the life of the process.

Definition 8 (ΓG). A model Γ for the guest G is a set of triple (φ,B, ts) where:

– φ is a partial embedding from G to the shared bigraph H;
– ts is a logical timestamp composed by the values of the logical clocks of the

processes involved in the making of φ i.e. those in img(P ◦ φ);
– B: is a boolean value that states if φ holds. This is used to implement, together

with ts, non-monotonic reasoning (with retracted embeddings).

Each model ΓG maintains only the last (according to the function ts) iteration
of every partial embedding φ. For this reason, we will also sometimes use ΓG as
a partial function from partial embedding to pair (Bool,Proc→ N), s.t.:

ΓG(φ) = (B, ts)
4⇐⇒ (φ,B, ts) ∈ ΓG.

Finally, we will say that: ΓG |= φ
4⇐⇒ ∃ts.(φ, true, ts) ∈ ΓG(φ).

The procedure onBigraphViewChanged of a process P is called whenever
the portion of the global bigraph held by P is modified. Updates define ticks in
the logical clock P.time held by each process. Moreover, updates may invalidate
some of the (partial) embeddings computed so far by the process and render
new embeddings available. The first have to be retracted and the seconds have
to be suggested to the nearby processes. Clearly, processes can see directly only
the side effects of updates on embeddings that are ”local” to them.

Definition 9 (Local embedding). Let φ : G H be a partial embedding and
let P : H → Proc be a partition. The owners of φ are the processes in img(P◦φ). If
φ has exactly one owner then it is said to be local to it. We denote the restriction

of φ to the portion of bigraph held by a set of processes S by φ
∣∣P
S

.

Local embeddings can be easily computed by the algorithm proposed in [14]
with minor modifications to relax the constraints ensuring totality.

Given a process Q, every partial embedding ψ v φ
∣∣P
{Q} is local to Q except for

the undefined embedding – since img(P◦∅) will always be empty. Therefore, the
restriction of φ to Q can be read as the largest embedding local to Q that supports
φ and every change in the state held by Q that invalidates this local embedding
invalidates also φ and hence have to be notified to every process owning φ.

It should be noted that, before sending a local embedding (suggest), the
process will check for local embeddings that were found in a previous iteration of
onBigraphViewChanged and do not appear in the current one: these embeddings
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Procedure onBigraphViewChanged()

time← time+ 1
for G ∈ Guests do

localEmbeddingsOfG← getLocalEmbeddings(G)

foreach (φ, true, ts) ∈ ΓG s.t. |dom(ts)| = 1 and
φ 6∈ localEmbeddingsOfG do

send 〈φ, false, self 7→ time〉 to self // self retraction
end
foreach φ ∈ localEmbeddingsOfG s.t. ΓG 6|= φ do

send 〈φ, true, self 7→ time〉 to self // self suggestion
end

end

are now erroneous and hence retracted by the process. Notice that the process
will never send the empty embedding.

In both cases, the message sent is an entry of a model Γ for a guest G, where
the timestamp is the partial function defined only on the process holding the
partial embedding (hence a pair P 7→ time) and the boolean value included in the
message is used to tell retract and suggest messages apart. These informations
offer us a causal ordering between suggestions and retractions and hence the
ability to handle non-monotonic reasoning in a system where messages can be
received out of order. In our system, a process can compute an embedding φ
that cannot be used in a reaction, for example if a retracting message about an
embedding ψ v φ has not been received yet. However, system consistency will
be preserved because rewritings are performed inside distributed transitions and
hence at least one of the processes that retracted φ will abort the transaction.

Retracts onBigraphViewChanged is the only procedure that generate retracted
embeddings. Here we will explain why we only need to retract local embeddings.
After a reaction, each process involved can decide that some embeddings no
longer apply. Each process has only a limited knowledge about the system’s
bigraph, given by the portion assigned to it: for this reason, a process can only
see the untruth of an embedding if it maps elements of the guest to elements
assigned to that process. More formally, the set of embeddings that the process
P can see as false can be written as RP ⊆ {φ | P ∈ img(P ◦ φ)}.

For each embedding φ, if a process P is involved in its formation, then there
exists at least one local embedding ψ computed by P such that ψ v φ. Given its
local knowledge about the global bigraph, we can conclude that if φ ∈ RP , then
there exists ψ v φ local to P and such that ψ ∈ RP . Therefore, if a process P
wants to retract each embedding in RP , it only needs to retract the subset of
its local embeddings {φ | φ ∈ RP ∧ {P} = img(P ◦ φ)}.

Γ -updates When a process P receives a retraction message 〈φ, false, ts〉1 such
that φ occurs in Γ but the occurrence was generated earlier than ts it invali-

1 Notice that the partial embedding being retracted is local.
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Procedure retract(G,φ,ts)
// ts involves exactly one process
{P} ← dom(ts)
t′ ← 0
if ΓG(φ) 6= ⊥ then // new embedding

(B′, ts′)← ΓG(φ)
t′ ← ts′(P )

end
if ts(P ) > t′ then

D ← ∅
foreach (ψ,B′′, ts′′) ∈ ΓG do

if φ v ψ ∧ t > ts′′(P ) then // a relation
ts′′(P )← t
ΓG(ψ)← (false, ts′′)
D ← D ∪ {P | self� P ∧ P ∈ img(P ◦ ψ)}

end

end
send 〈φ, false, ts〉 to D

end

dates every ψ in Γ made from φ and more recent than ts and then forwards
the retraction message to every neighbour process involved by the retraction
i.e. appearing in a partial embedding being removed from Γ . Formally, we define
a retract relation a between local and partial embedding:

(φ, P 7→ t) a (ψ, ts)
4⇐⇒ φ v ψ ∧ t > ts(P )

With this relation, we can define the first updating rule for ΓG as follows:

(ψ,B, ts) ∈ ΓG (φ, P 7→ t) a (ψ, ts) (ψ, false, ts′) ∈ Γ ′G
ΓG

〈φ,false,P 7→t〉−−−−−−−−−→ Γ ′R

(Γ -UP1)

where

ts′(x) ,
{
t, if x = P .

ts, otherwise.

and Γ ′G it’s equal to ΓG for each (ψ,B, ts) ∈ ΓG s.t. (φ, P 7→ time) 6a (ψ, ts).
The procedure retract implements what we have seen so far in this section, and
it models rather closely the updating rule (Γ -UP1).

If, instead, P receives a suggestion message 〈φ, true, ts〉, it needs to update
a subset of its embeddings and derive new embeddings. These two actions are
implemented respectively by the procedures suggest and combine. Embeddings
that need to be updated are all ψ in ΓG, ΓG(ψ) = (B′, ts′), such that (φ, ts) `
(ψ,B′, ts′), where the update relation ` is defined as follows:

(φ, ts) ` (ψ,B′, ts′)
4⇐⇒ ψ v φ ∧ ∀P.ts′(P ) ≤ ts(P )∧

(B′ =⇒ ∃Q.ts′(Q) < ts(Q))
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Procedure suggest(G,φ,ts)
if ΓG(φ) = ⊥ then // new embedding

ΓG(φ)← (true, ts)
send 〈φ, true, ts〉 to {P | φ� P}
combine(G,φ,ts)

end
foreach (ψ,B′, ts′) ∈ ΓG do

// ` relation
if ψ v φ∧∀(P, t) ∈ ts′ t ≤ ts(P ) ∧ (B′ → ∃(P, t) ∈ ts′ t < ts(P )) then

ts′ ← {(P, t)|(P, t) ∈ ts ∧ ∃t′(P, t′) ∈ ts′}
ΓG(ψ)← (true, ts′)
send 〈ψ, true, ts′〉 to {P | ψ� P}
combine(G,ψ,ts′)

end

end

An embedding ψ v φ in ΓG needs to be updated if the time associated to each
process via the logical timestamp stored in ΓG(ψ) is lower or equal than its
counterpart in the message’s timestamp ts. Also, if ΓG |= ψ, ψ will only be
updated if exists a process P such that ts(P ) is strictly greater than the time of
P associated with ψ in ΓG. This last constraint ensures that if a process receives
multiple instances of the same suggesting message, it will not update ΓG and
send that message to its neighbourhood more than once. We can now defines
the ΓG-update rule for suggesting messages:

(ψ,B′, ts′) ∈ ΓG (φ, ts) ` (ψ,B′, ts′) (ψ, true, ts′′) ∈ Γ ′R
ΓG

(G,φ,true,ts)−−−−−−−−→ Γ ′R

(Γ -UP2)

where ts′′ = ts
∣∣
dom(ts′)

.

After this update step, each updated embedding will be used to derive new
embeddings. Given an updated embedding φ from the previous step, processes
will search for all ψ such that φ t↓ ψ, where the relation t↓, between partial
embeddings, is defined as follows:

φ t↓ ψ 4⇐⇒ ψ 6v φ ∧ φ 6v ψ ∧ φ t ψ is a partial embedding

We can now define the third updating rule for ΓG, which describes how embed-
dings are derived:

(φ, true, ts) ∈ ΓG (ψ, true, ts′) ∈ ΓG φ t↓ ψ
(φ t ψ, true, ts′′) ∈ ΓG

(Γ -UP3)

where

P ′′(x) =

{
max(P (x), P ′(x)), if ΓR 6|= φ t ψ;

max(P (x), P ′(x), π2(ΓR(φ t ψ))(x)), otherwise.
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Procedure combine(G,φ,ts)
foreach (ψ,B′, ts′) ∈ ΓG do

ρ← φ t ψ
if B′ ∧ ψ 6v φ ∧ φ 6v ψ ∧ isConsistent(ρ) then // t↓ relation

ts′′ ← {(P, t) | (ts(P ) 6= ⊥ ∨ ts′(P ) 6= ⊥) ∧ t = max(ts(P ), ts′(P ))}
if ΓG(ρ) = ⊥ then

ΓG(ρ)← (true, ts′′)
send 〈ρ, true, ts′′〉 to {P | ρ� P}

else
(oldB,oldts) ← ΓG(ρ)
if oldB then

ts′′ ← {(P,max(t1, t2)) | (P, t1) ∈ ts′′ ∧ (P, t2) ∈ oldts}
end
if ∀(P, t) ∈ oldts t ≤ ts′′(P ) then

ΓG(ρ)← (true, ts′′)
send 〈ρ, true, ts′′〉 to {P | ρ� P}

end

end

end

end

and ΓR is ΓG before the new derivation of φ t ψ (with the previous timestamp
for φtψ). This updating rule, if abstracted from the timestamps ts and ts′, can
be expressed the following cleaner form:

ΓG |= φ ΓG |= ψ φ t↓ ψ
ΓG |= ψ t φ

Each embedding updated or derived from a suggestion message will update Γ
and will be sent to the process neighbourhood restricted to those processes that
are considered adjacent to the embedding i.e. those holding some component of
the shared bigraph that is adjacent (in the sense of Definition 7) to the image of
the partial embedding. Embeddings that are completed are exposed to the outer
system contextually to the update of Γ .

To make our set of updating rules complete, we need two additional rules
to manage incoming messages carrying embeddings that were never seen be-
fore (i.e. ΓG(φ) = ⊥). This two rules are implemented by retract and suggest
procedures with minor changes w.r.t. the case of (Γ -UP1) and (Γ -UP2).

6 Conclusions and future work

In this paper we have presented an algorithm for computing bigraph embeddings
in a distributed environment where the host bigraph is spread across several co-
operating processes. Differently from existing algorithms [8,14,21], this algorithm
is completely decentralized and does not require any process in the system to
have a complete view of the global state, hence it can scale to handle bigraphs too
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large to reside in the memory of a single process/machine. Moreover, embeddings
that are not affected by a reaction are not recomputed and in general the compu-
tation of an embedding requires a number of messages that is linearly bounded
by the size of the embedded bigraph. However, the overall network impact is not
negligible and, in the worst case, can be outperformed by the “semi-distributed”
algorithm proposed in [12] where processes visit the shared bigraph (the visit is
guaranteed to be minimal by the use of IPOs) and compute embeddings locally
using the information gathered. Fortunately there is room for improvement for
the algorithm proposed: suggestion and retraction messages can be grouped and
compressed by suitable representations since the combinatoric explosion is due
to symmetries and isomorphisms between local partial embeddings. Moreover,
symbolic representations can be put in place to further reduce the communi-
cation footprint of the algorithm. We leave this developments for the extended
version of the paper and future works.

The distributed embedding algorithm is the basic block of the distributed
bigraphical machine, a distributed instance of the abstract bigraph machine. This
machine inherits the benefits of the decentralized algorithm, e.g. its scalability.

A direct application of the distributed embedding algorithm is to simulate,
or execute, multi-agent systems. In [12] the authors devise a methodology for
design and prototype multi-agent systems with BRS. Intuitively, the application
domain is modelled by a BRS and entities in its states are divided as “subjects”
and “objects” depending on their ability to actively perform actions. Subjects
are precisely the agents of the system and reactions are reconfigurations. This
observation yields a coherent way to partition and distribute a bigraph among the
agents, which can be assimilated to the processes of the distributed bigraphical
machine (execution policies are defined by agents desires and goals). Therefore,
these agents can find and perform bigraph rewritings in a truly concurrent,
distributed fashion, by using the distributed embedding algorithm.

How the bigraph is partitioned and distributed can affect the performance of
the system. For instance, it is easy to devise a situation in which even relatively
small guests require the cooperation of several processes, say nearly one for each
component of the guest. An interesting line of research would be to study the
relation between guests, partitions, and performance in order to develop efficient
distribution strategies. Moreover, structured partitions lend themselves to ad-hoc
heuristics and optimizations. As an example, the way bigraphs are distributed
among agents in [12] takes into account how they interact and reconfigure.

We considered adjacency as an undirected graph but some information is lost
in this simplification. In fact, place and link graphs can be seen as forests sug-
gesting the use of directed graphs. We intend to use this additional information
to improve the routing through the induced semantic (directed) network.
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A Unification Algorithm for GP

Ivaylo Hristakiev and Detlef Plump

The University of York, UK

Abstract. The graph programming language GP allows to apply sets
of rule schemata (or “attributed” rules) nondeterministically. To anal-
yse conflicts of programs statically, graphs labelled with expressisons are
overlayed to construct critical pairs of rule applications. Each overlay
induces a system of equations whose solutions represent different con-
flicts. We present a rule-based unification algorithm for GP expressions
that is terminating and sound. Soundness means that every substitution
generated by the algorithm solves the input system of equations. Since
GP labels are lists constructed by concatenation, unification modulo as-
sociativity and unit laws is required. This problem, which is similar to
word unification, is infinitary in general but becomes finitary due to GP’s
rule schema syntax.

1 Introduction

A common programming pattern in the graph programming language GP [7, 8]
is to apply a set of graph transformation rules as long as possible. To execute
such a loop {r1, . . . , rn}! on a host graph, in each iteration an applicable rule ri
is selected and applied. As rule selection and rule matching are nondeterminis-
tic, different graphs may result from the loop. Thus, if the programmer wants
the loop to implement a function, a useful tool would be a static analysis that
establishes or refutes functional behaviour.

The above loop is guaranteed to produce a unique result if the rule set
{r1, . . . , rn} is terminating and confluent. However, conventional confluence anal-
ysis via critical pairs [6] assumes rules with constant labels whereas GP employs
rule schemata (or “attributed” rules) whose graphs are labelled with expressions.
Confluence of attributed graph transformation rules has been considered in [4,
2, 3], but we are not aware of algorithms that check confluence over non-trivial
attribute algebras such as GP’s which includes list concatenation and Peano
arithmetic. The problem is that the equational theory of an attribute algebra
needs to be taken into account when constructing critical pairs and checking
their joinability.

For example, [4] presents a method of constructing critical pairs in the case
where the equational theory of the attribute algebra is represented by a con-
vergent term rewriting system. The algorithm first computes normal forms of
the attributes of overlayed nodes and subsequently constructs the most general
unifier of the normal forms. This has been shown to be incomplete [2, p.198] in
that the constructed set of critical pairs need not represent all possible conflicts.
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For, the most general unifier produces identical attributes—but it is necessary
to find all substitutions that make attributes equivalent in the equational theory.

Graphs in GP rule schemata are labelled with lists of integer and string
expressions, where lists are constructed by concatenation. In host graphs, list
entries must be constant values. Integers and strings are subtypes of lists in that
they represent lists of length one. As a simple example, consider the program in
Figure 1 for calculating shortest distances. The program expects input graphs
with non-negative integers as edge labels, and arbitrary lists as node labels.
There must be a unique marked node (drawn shaded) whose shortest distance
to each reachable node has to be calculated. The rule schemata init and add

main = init; {add, reduce}!
init(x : list) add(x, y : list; m, n : int)

x

1

⇒ x:0

1

x:m y

1 2

n ⇒ x:m y:m+n

1 2

n

reduce(x, y : list; m, n, p : int)

x:m y:p

1 2

n ⇒ x:m y:m+n

1 2

n

where m+ n < p

Fig. 1. A program calculating shortest distances

append distances to the labels of nodes that have not been visited before, while
reduce decreases the distance of nodes that can be reached by a path that is
shorter than the current distance.

To construct the conflicts of the rule schemata add and reduce, their left-
hand sides are overlayed. For example, the structure of the left-hand graph of
reduce can match the following structure in two different ways:

Consider a copy of reduce in which the variables have been renamed to x′, m′,
etc. To match reduce and its copy differently requires solving the system of
equations {x:m =? y′:p′, y:p =? x′:m′}. Solutions to these equations should be as
general as possible to represent all potential conflicts resulting from the above
overlay. In this simple example, it is clear that the substitution

σ = {x′ 7→ y, m′ 7→ p, y′ 7→ x, p′ 7→ m}
is a most general solution. It gives rise to the following critical pair:1

1 For simplicity, we ignore the condition of reduce.
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x:p+n′ y:p

1 2

n

n′
⇐ x:m y:p

1 2

n

n′
⇒ x:m y:m+n

1 2

n

n′

In general though, equations can arise that have several independent solu-
tions. For example, the equation n:x =? y:2 (with n of type int and x,y of type
list) has the minimal solutions

σ1 = {x, y 7→ empty, n 7→ 2} and σ2 = {x 7→ z:2, y 7→ n:z}

where empty represents the empty list and z is a list variable.
Seen algebraically, we need to solve equations modulo the associativity and

unit laws

AU = {x : (y : z) = (x : y) : z, empty : x = x, x : empty = x}.

This problem is similar to word unification [1], which attempts to solve equa-
tions modulo associativity. Solvability of word unification is decidable, albeit in
PSPACE [5], but there is not always a finite complete set of solutions. The same
holds for AU-unification (see Subsection 3.3). Fortunately, GP’s syntax for left-
hand sides of rule schemata forbids labels with more than one list variable. We
conjecture that this guarantees that left-hand overlays induce equation systems
possessing finite complete sets of solutions.

This paper is the first step towards a static confluence analysis for GP pro-
grams. In Section 3, we present a rule-based unification algorithm for systems of
equations with left-hand expressions of rule schemata. We show that the algo-
rithm always terminates and that it is sound in that each substitution generated
by the algorithm is an AU-unifier of the input problem.

2 Rule Schemata

We refer to [7, 8] for the definition of GP and more example programs. In this
section, we define (unconditional) rule schemata which are the “building blocks”
of graph programs.

A graph over a label set C is a system G = (V,E, s, t, l,m), where V and E
are finite sets of nodes (or vertices) and edges, s, t : E → V are the source and
target functions for edges, l : V → C is the node labelling function and m : E → C
is the edge labelling function. We write G(C) for the class of all graphs over C.

Figure 2 shows an example for the declaration of a rule schema. The types
int and string represent integers and character strings. Type atom is the union
of int and string, and list represents lists of atoms. Given lists l1 and l2, we
write l1 : l2 for the concatenation of l1 and l2. The empty list is denoted by empty.
In pictures of graphs, nodes or edges without label (such as the dashed edge in
Figure 2) are implicitly labelled with the empty list. We equate lists of length
one with their entry to obtain the syntactic and semantic subtype relationships
shown in Figure 3. Hence, for example, all labels in Figure 2 are list expressions.
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bridge(x, y : list; a : atom; n : int; s, t : string)

a:x

1

n

2

y

3

s t ⇒ a

1

x:n

2 3

n ∗ n
3

s t

Fig. 2. Declaration of a rule schema

Also, GP 2 allows tomark nodes and edges. For example, the outermost nodes
in Figure 2 are marked by a grey shading, and the dashed edge is a marked edge
(labelled with the empty list). Figure 4 gives a grammar in Extended Backus-
Naur Form defining the abstract syntax of labels. (In this paper, we omit string
concatenation because it would inflate the unification algorithm without posing
an extra challenge.) The functions llength and slength return the length of a
list resp. string, while indeg and outdeg access the indegree resp. outdegree of
a left-hand node in the host graph.

Figure 4 defines four syntactic categories of expressions: Integer, String, Atom
and List, where Integer and String are subsets of Atom which in turn is a subset
of List. Category Node is the set of node identifiers used in rule schemata.
Moreover, IVar, SVar, AVar and LVar are the sets of variables of type int,
string, atom and list. We assume that these sets are disjoint and define Var =
IVar ∪ SVar ∪ AVar ∪ LVar. The mark components of labels are represented
graphically rather than textually.

Each expression l has a unique smallest type, denoted by type(l), which can
be read off the hierarchy in Figure 3 after l has been normalised with the rewrite
rules shown at the beginning of Subsection 3.2. We write type(l1) < type(l2) or
type(l1) ≤ type(l2) to compare types according to the subtype hierarchy. If the
types of l1 and l2 are incomparable, we write type(l1) ‖ type(l2).

list

atom

int string

char

⊆

⊆ ⊇

⊆

(Z ∪ Char∗)∗

Z ∪Char∗

Z Char∗

Char

⊆

⊆ ⊇

⊆

Fig. 3. Subtype hierarchy for labels
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Integer ::= Digit {Digit} | IVar
| ‘−’ Integer | Integer ArithOp Integer

| llength ‘(’ List ‘)’ | slength ‘(’ String ‘)’

| (indeg | outdeg) ‘(’ Node ‘)’

ArithOp ::= ‘+’ | ‘-’ | ‘∗’ | ‘/’
String ::= ‘ “ ’ {Char} ‘ ” ’ | SVar
Atom ::= Integer | String | AVar
List ::= empty | Atom | LVar | List ‘:’ List
Label ::= List [Mark]

Mark ::= red | green | blue | grey | dashed

Fig. 4. Abstract syntax of rule schema labels

The values of rule schema variables at execution time are determined by
graph matching. To ensure that matches induce unique “actual parameters”,
expressions in the left graph of a rule schema must have a simple shape.

Definition 1 (Simple expression). A simple expression contains no arith-
metic operators (with the possible exception of a unary minus preceding a se-
quence of digits), no length or degree operators, and at most one occurrence of
a list variable.

For example, given the variable declarations of Figure 2, a:x and y:n:n are
simple expressions whereas n ∗ 2 or x:y are not simple.

Definition 2 (Rule schema). A rule schema 〈L, R, I〉 consists of graphs L,R
in G(Label) and a set I, the interface, such that I ⊆ VL ∩ VR. All labels in L
must be simple and all variables occurring in R must also occur in L.

When a rule schema is graphically declared, as in Figure 2, the interface I is
represented by the node numbers in L and R. Nodes without numbers in L are
to be deleted and nodes without numbers in R are to be created. All variables
in R have to occur in L so that for a given match of L in a host graph, applying
the rule schema produces a graph that is unique up to isomorphism.

3 Unification

We start with introducing some technical notions such as substitutions, unifica-
tion problems and complete sets of unifiers. Then, in Subsection 3.2, we present
our unification algorithm. In Subsection 3.3, we prove that the algorithm termi-
nates and is sound.
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3.1 Preliminaries

A substitution is a family of mappings σ = (σX)X∈{I,S,A,L} where σI : IVar →
Integer, σS : SVar → String, σA : AVar → Atom, σL : LVar → List. Here Integer,
String, Atom and List are the sets of expressions defined by the GP label gram-
mar of Figure 4. For example, if z ∈ LVar, x ∈ IVar and y ∈ SVar, then we write
σ = {x 7→ x+ 1, z 7→ y : −x : y} for the substitution that maps x to x+ 1, z to
y : −x : y and every other variable to itself.

Applying a substitution σ to an expression t, denoted by tσ, means to replace
every variable x in t by σ(x) simultaneously. In the above example, σ(z : −x) =
y : −x : y : −(x+ 1).

By Dom(σ) we denote the set {x ∈ Var | σ(x) 6= x} and by VRan(σ) the set
of variables occurring in the expressions {σ(x) | x ∈ Var}. A substitution σ is
idempotent if Dom(σ)∩VRan(σ) = ∅.

Definition 3 (Unification problem). A unification problem is a finite multi-
set of equations

P = {s1 ?
= t1, . . . , sn

?
= tn}

between simple list expressions.

The symbol =? signifies that the equations must be solved rather than having
to hold for all values of variables.

Consider the equational axioms for associativity and unity,

AU = {x : (y : z) = (x : y) : z, empty : x = x, x : empty = x}

where x, y, z are variables of type list, and let =AU be the equivalence relation
on expressions generated by these axioms.

Definition 4 (Unifier). A unifier of a problem P = {s1 =? t1, . . . , sn =? tn}
is a substitution σ such that

s1σ =AU t1σ, . . . , snσ =AU tnσ.

The set of all unifiers of P is denoted by U(P ). We say that P is unifiable if
U(P ) 6= ∅.

A substitution σ is more general on a set of variables X than a substitution
θ if there exists a substitution λ such that xθ =AU xσλ for all x ∈ X . In this
case we write σ ≦X θ and say that θ is an instance of σ on X . Substitutions σ
and θ are equivalent on X , denoted by σ =X θ, if σ ≦X θ and θ ≦X σ.

Definition 5 (Complete set of unifiers). A set C of substitutions is a com-
plete set of unifiers of a unification problem P if

1. C ⊆ U(P ), that is, each substitution in C is a unifier of P , and
2. for each θ ∈ U(P ) there exists σ ∈ C such that σ ≦X θ, where X = Var(P ).

Set C is also minimal if it satisfies
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3. each two substitutions in C are incomparable with respect to ≦X , that is,
for all σ, σ′ ∈ C, σ ≦X σ′ implies σ = σ′.

If a unification problem P is not unifiable, then the empty set is a minimal
complete set of unifiers of P .

We call a variable x solved in P if it occurs exactly once in P , namely on the
left-hand side of an equation x = L with type(x) ≥ type(L).

Definition 6 (Solved form). A unification problem P = {x1 =? t1, . . . , xn =?

tn} is in solved form if the variables xi are pairwise distinct and solved in P . In
this case we define the substitution

−→
P = {x1 7→ t1, . . . , xn 7→ tn}.

For example, if a is an atom variable and x a list variable, then the problems
{x = a} and {x = 1 : a} are in solved form whereas {x = a : x}, {a : 1 = 2 : 1}
and {a = x} are not solved. For simplicity, we replace =? with = in unification
problems from now on.

The minimal complete set of unifiers of the problem {a : x = y : 2} (where a
is an atom variable and x,y are list variables) is {σ1, σ2} with

σ1 = {a 7→ 2, x 7→ empty, y 7→ empty} and σ2 = {x 7→ z : 2, y 7→ a : z}.
We have σ1(a : x) = 2 : empty =AU 2 =AU empty : 2 = σ1(y : 2) and σ2(a : x) =
a : z : 2 = σ2(y : 2). Other unifiers such as σ3 = {x 7→ 2, y 7→ a} are instances
of σ2.

3.2 Unification Algorithm

We start with some notational conventions for the rest of this section:

– L,M stand for simple expressions,
– x, y, z stand for variables of any type (unless otherwise specified),
– a, b stand for simple string or integer expressions, or atom variables,
– s, t stand for simple string or integer expressions, or atom variables, or list

variables,
– the symbol ∪ denotes multiset union.

Preprocessing. Given a unification problem P , we rewrite the terms in P using
the rules

L : empty→ L and empty : L → L

where L ranges over list expressions. These reduction rules are applied exhaus-
tively before any of the transformation rules. For example,

x : empty : 1 : empty → x : 1 : empty → x : 1.

We call this process normalization. In addition, the rules are applied to each
instance of a transformation rule (that is, once the formal parameters have been
replaced with actual parameters) before it is applied, and also after each trans-
formation rule application.
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Transformation rules. Figure 5 shows the transformation rules, the essence of
our approach, in an inference system style where each rules consists of a premise
and a conclusion.

Remove: deletes trivial equations
Decomp: replaces equations between list expressions by equations between

their subexpressions
Subst1: propagates a solved variable to the rest of the problem
Subst2: assigns empty to a list variable
Subst3: assigns an atom prefix and a fresh list variable to a list variable
Orient1/2: move variables to left-hand side
Orient3: moves variables of larger type to left-hand side

The rules induce a transformation relation ⇒ on unification problems. In
order to apply any of the rules to a problem P , the problem part of its premise
needs to be matched onto P . Subsequently, the boolean condition of the premise
is checked and the rule instance is normalized so that its premise is identical to
P .

For example, the rule Orient3 can be matched to P = {a : 2 = l, a = 3}
(where a and l are variables of type atom and list, respectively) by setting
y 7→ a, x 7→ l, L 7→ l, M 7→ empty and P 7→ {a = 3}. The rule instance is then

{a : 2 = l : empty} ∪ {a = 3}
{l : empty = a : 2} ∪ {a = 3} Orient3

which gets normalized to

{a : 2 = l} ∪ {a = 3}
{l = a : 2} ∪ {a = 3} Orient3

whose conclusion is the result of applying Orient3 to P .
Showing a unification problem cannot be unified can be a lengthy affair

because we need to compute all normal forms with respect to ⇒. Instead, the
rules Occur and Clash1-4, shown in Figure 6, introduce failure. Failure cuts off
parts of the search tree for a given problem P . This is because if P ⇒ fail, then
P has no unifiers and it is not necessary to compute a normal form. Effectively,
the failure rules have precedence over the other rules. They are justified by the
following lemmata.

Lemma 1. A normalised equation x = L has no solution if L is a simple ex-
pression, x ∈ V ar(L), type(x) = list and x 6= L.

Proof. Since x ∈ V ar(L) and x 6= L, L is of the form s1 : s2 : . . . : sn with
n ≥ 2 and x ∈ V ar(si) for some 1 ≤ i ≤ n. As L is normalised, none of the
terms si contains the constant empty. Also, since L is simple, it contains no list
variables other than x and x is not repeated. It follows σ(x) 6=AU σ(L) for every
substitution σ. ⊓⊔
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{L = L} ∪ P

P
Remove

{s : L = t : M} ∪ P L 6= empty

{s = t, L = M} ∪ P
Decomp

{x = L} ∪ P x ∈ Var(P ) x /∈ Var(L) type(x) ≥ type(L)

{x = L} ∪ P{x 7→ L} Subst1

{x : L = M} ∪ P L 6= empty type(x) = list

{x = empty, L = M} ∪ P{x 7→ empty} Subst2

{x : L = b : M} ∪ P L 6= empty z is a fresh list variable type(x) = list

{x = b : z, z : L = M} ∪ P{x 7→ b : z} Subst3

{a : L = x : M} ∪ P a is not a variable

{x : M = a : L} ∪ P
Orient1

{y : L = x} ∪ P L 6= empty type(x) = type(y)

{x = y : L} ∪ P
Orient2

{y : L = x : M} ∪ P type(y) < type(x)

{x : M = y : L} ∪ P
Orient3

Fig. 5. Transformation rules

Lemma 2. Equations of the form a : L = empty or empty = a : L have no
solution if a is an atom expression.

Lemma 3. An equation a : L = b : M has no solution if a 6= b are atom
expressions without variables.

The algorithm. The algorithm in Figure 7 starts by normalizing the input
problem, as explained above. It uses a queue of unification problems to search
the derivation tree of P with respect to ⇒ in a breadth-first manner. The first
step is to put the normalized problem P on the queue.

The variable next holds the head of the queue. If next is in solved form, then−−→
next (see Definition 6) is a unifier of the original problem and is added to the
set U of solutions. Otherwise, the next step is to construct all problems P ′ such
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{x = L} ∪ P x ∈ Var(L) x 6= L type(x) = list

fail
Occur

{a : L = b : M} ∪ P a 6= b Var(a) = ∅ = Var(b)

fail
Clash1

{a : L = empty} ∪ P

fail
Clash2

{empty = a : L} ∪ P

fail
Clash3

{x = L} ∪ P type(x) ‖ type(L)
fail

Clash4

Fig. 6. Failure rules

that next ⇒ P ′. If P ′ is fail, then the derivation tree below next is ignored,
otherwise P ′ gets normalized and enqueued.

An example tree traversed by the algorithm is shown in Figure 8. Nodes are
labelled with unification problems and edges represent applications of transfor-
mation rules. The root of the tree is the problem {a : x = y : 2} to which the
rules Decomp and Orient3 can be applied. The two resulting problems form the
second level of the search tree and are processed in turn. Eventually, the unifiers

σ1 = {x 7→ 2, y 7→ a}
σ2 = {x 7→ z : 2, y 7→ a : z}
σ3 = {a 7→ 2, x 7→ empty, y 7→ empty}

are found, which represent a complete set of unifiers of the initial problem. Note
that the set is not minimal because σ1 is an instance of σ2.

The algorithm is similar to the A-unification (word unification) algorithm
presented in [9] which looks only at the head of an equation. That algorithm
terminates for the special case that the input problem has no repeated variables,
and is sound and complete. Our approach can be seen as an extension from
A-unification to AU-unification, to handle the unit equations, and presented in
the rule-based style of [1]. In addition, our algorithm deals with GP’s subtype
system.
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Unify(P) : U := ∅
create empty queue Q of unification problems
normalize P
Q.enqueue(P)
while Q is not empty
next := Q.dequeue()
if next is in solved form

U := U ∪ {−−→next}
else if next ; fail

foreach P′ such that next ⇒ P′

normalize P′

Q.enqueue(P′)
end foreach

end if

end if

end while

return U

Fig. 7. Unification algorithm

3.3 Termination and Soundness

We show that the unification algorithm terminates if the input problem con-
tains no repeated list variables, where termination of the algorithm follows from
termination of the relation ⇒.

We first demonstrate that the algorithm need not terminate on unification
problems with repeated list variables. A counterexample is the unification prob-
lem {x:1 = 1:x} which initiates the following infinite sequence:

{x:1 = 1:x} ⇒Subst3 {x = 1:z1, z1:1 = x}
⇒Subst1 {x = 1:z1, z1:1 = 1:z1}
⇒Subst3 {x = 1:z1, z1 = 1:z2, z2:1 = z1}
⇒Subst1 {x = 1:1:z2, z1 = 1:z2, z2:1 = 1:z2}
⇒Subst3 {x = 1:1:z2, z1 = 1:z2, z2 = 1:z3, z3:1 = z2}
⇒Subst1 {x = 1:1:1:z3, z1 = 1:1 : z3, z2 = 1 : z3, z3:1 = 1 : z3}
⇒Subst3 . . .

...

Note that {x:1 = 1:x} has an infinite number of solutions that are mutually
incomparable: {x 7→ empty}, {x 7→ 1}, {x 7→ 1:1}, . . .We remark that the A-
unification algorithm of [9] also diverges on this problem.

To prove that the transformation relation ⇒ terminates on problems without
repeated list variables, we need to consider an invariant which is implied by this
property. This is because rule Subst3 introduces a repeated list variable. We
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{
a : x = y : 2

}

{
a = y
x = 2

}

{
y = a
x = 2

}

solved

Orient3

Decomp

{
y : 2 = a : x

}

{
y = a
2 = x

}

{
y = a
x = 2

}

solved

Orient1

Decomp

{
y = a : z
z : 2 = x

}





y = a : z
z = x
2 = empty





fail

Clash2

Decomp

{
y = a : z
x = z : 2

}

solved

Orient2

Subst3

{
2 = a : x
y = empty

}

{
a : x = 2
y = empty

}





a = 2
x = empty

y = empty





solved

Decomp

Orient1

Subst2

Orient3

Fig. 8. Unification example

say that a unification problem P satisfies the repeated variable condition if for
every list variable x, the subproblem P \ {y = L | y 6= x} contains at most one
occurrence of x.

Lemma 4 (Invariance). For each transformation P ⇒ P ′ where P satisfies
the repeated variable condition, P ′ also satisfies this condition.

The proof is by a careful but straightforward inspection of all rules in Figure 5.
We are now ready to state our termination result.

Theorem 1 (Termination). If P is a unification problem without repeated list
variables, then there is no infinite sequence P ⇒ P1 ⇒ P2 ⇒ . . .

Proof. Define the size |L| of an expression L by

– 0 if L = empty,
– 1 if L is an expression of category Atom (see Figure 4) or a list variable,
– |M |+ |N |+ 1 if L = M : N .

We define a lexicographic termination order by assigning to a unification problem
P the tuple (n1, n2, n3, n4, n5, n6), where
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– n1 is the number of unsolved variables in P ;
– n2 is the size of P \ Q where Q = {x = L | x ∈ Var}, that is, n2 =∑

(L=R)∈P\Q(|L|+ |R|);
– n3 is the size of P , that is, n3 =

∑
(L=R)∈P (|L|+ |R|);

– n4 is the number of equations L = x : M in P where L is not a variable;
– n5 is the number of equations y : L = x in P where type(x) = type(y) and

L 6= empty;
– n6 is the number of equations y : L = x : M in P where type(y) < type(x).

The table in Figure 9 shows that for each transformation step P ⇒ P ′, the tuple
associated with P ′ is strictly smaller than the tuple associated with P in the
lexicographic order induced by the components n1 to n6.

n1 n2 n3 n4 n5 n6

Subst1 >
Subst3 ≥ >
Subst2 ≥ ≥ >
Decomp ≥ ≥ >
Remove ≥ = >
Orient1 ≥ ≥ = >
Orient2 ≥ ≥ = ≥ >
Orient3 ≥ ≥ = ≥ ≥ >

Fig. 9. Lexicographic termination order

For most rules, the table entries are easy to check. The argument why Subst3
decreases n2 is a bit more involved because the rule solves x and creates two
copies of the fresh variable z. Since the repeated variable condition of Lemma
4 is an invariant, the instance of problem P in the premise of Subst3 can only
contain occurrences of x that appear on the right-hand side of equations y = L
with y 6= x. It follows that the n2-value of P is the same as that of P{x 7→ b : z}.
As a consequence, each application of Subst3 decreases n2 by 2. ⊓⊔

In order to show that the unification algorithm is sound, we need some pre-
liminary lemmata.

Lemma 5. If P = {x1 =? t1, . . . , xn =? tn} is in solved form then for all

σ ∈ U(P ), σ =
−→
P σ.

Proof. We show that σ and
−→
P σ behave the same on all variables by considering

the following cases:

1. x ∈ {x1, . . . , xn}, i.e. x = xk, then xk
−→
P = tk which implies xk

−→
P σ = tkσ.

Also since σ is a unifier of P , then xkσ = tkσ. Therefore xk
−→
P σ = xkσ .
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2. x /∈ {x1, . . . , xn}, then x
−→
P = x for variables outside of the domain and hence

x
−→
P σ = xσ

⊓⊔

Lemma 6. If P is in solved form then
−→
P is an idempotent most general unifier

of P .

Proof. Since none of the xi occur in any of the t’s, we get that Dom(
−→
P ) ∩

V Ran(
−→
P ) = ∅ . Therefore,

−→
P is idempotent. Also, we have xi

−→
P = ti = ti

−→
P for

the same reason, hence
−→
P ∈ U(P ). Finally,

−→
P is most general because

−→
P ≤ σ

for all σ ∈ U(P ) by Lemma 5. ⊓⊔

Lemma 7. If P ⇒ P ′, then U(P ) ⊇ U(P ′)

Proof. For Remove, Decomp and Orient, this is obvious.
For Subst1, let θ = {x 7→ L}. By applying Lemma 5 to {x = L} which is in

solved form, we get that σ = θσ if xσ = Lσ
σ ∈ U({x = L} ∪ Pθ) ⇐⇒ xσ = Lσ ∧ σ ∈ U(Pθ)

⇐⇒ xσ = Lσ ∧ θσ ∈ U(P )
⇐⇒ xσ = Lσ ∧ σ ∈ U(P )
⇐⇒ σ ∈ U({x = L} ∪ P )

For Subst2, the argument is similar. Let θ = {x 7→ empty}. Then σ = θσ if
xσ = empty σ(= empty)

σ ∈ U({x = empty, L = M} ∪ Pθ) ⇐⇒ Lσ = Mσ ∧ xσ = empty σ ∧ σ ∈ U(Pθ)
⇐⇒ Lσ = Mσ ∧ xσ = empty σ ∧ θσ ∈ U(P )
⇐⇒ Lσ = Mσ ∧ xσ = empty σ ∧ σ ∈ U(P )
⇒ xσ : Lσ = empty σ : Mσ ∧ σ ∈ U(P )
⇐⇒ xσ : Lσ = empty : Mσ ∧ σ ∈ U(P )
⇐⇒ xσ : Lσ = Mσ ∧ σ ∈ U(P )
⇐⇒ σ(x : L) = σM ∧ σ ∈ U(P )
⇐⇒ σ ∈ U({x : L = M} ∪ P )

For Subst3, let θ = {x 7→ b : z}. Then σ = θσ if xσ = σ(b : z), again by
Lemma 5

σ ∈ U({x = b : z, z : L = M} ∪ Pθ)
⇐⇒ σ(z : L) = Mσ ∧ xσ = σ(b : z) ∧ σ ∈ U(Pθ)
⇐⇒ σ(z : L) = Mσ ∧ xσ = σ(b : z) ∧ σθ ∈ U(P )
⇐⇒ σ(z : L) = Mσ ∧ xσ = σ(b : z) ∧ σ ∈ U(P )
⇐⇒ σ(z : L) = Mσ ∧ xσ : Lσ = σ(b : z) : Lσ ∧ σ ∈ U(P )
⇐⇒ σ(z : L) = Mσ ∧ xσ : Lσ = bσ : σ(z : L) ∧ σ ∈ U(P )
⇐⇒ σ(z : L) = Mσ ∧ xσ : Lσ = bσ : Mσ ∧ σ ∈ U(P )
⇒ xσ : Lσ = bσ : Mσ ∧ σ ∈ U(P )

⇐⇒ σ(x : L) = σ(b : M) ∧ σ ∈ U(P )
⇐⇒ σ ∈ U({x : L = b : M} ∪ P ) ⊓⊔

Theorem 2 (Soundness). If P ⇒+ P ′ with P ′ in solved form, then
−→
P ′ is an

idempotent unifier of P .
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Proof. Note that
−→
P ′ unifies P ′ because it is idempotent (by Lemma 6); a simple

induction with Lemma 7 shows that
−→
P ′ must be a unifier of P . ⊓⊔

4 Conclusion

This paper presents groundwork for a static confluence analysis of GP programs.
We have constructed a rule-based unification algorithm for systems of equations
with left-hand expressions of rule schemata, and have shown that the algorithm
always terminates and is sound.

Future work includes proving that our unification algorithm always delivers
a complete set of solutions, that is, that every unifier of the input problem is
an instance of some unifier in the computed set of solutions. Next, to establish
a Critical Pair Lemma in the sense of [6], a notion of independent rule schema
applications has to be developed, as well as restriction and embedding theorems
for derivations with rule schemata. In addition, since critical pairs contain graphs
labelled with expressions, checking joinability of critical pairs will require suf-
ficient conditions under which equivalence of expressions can be decided. This
is because the theory of GP’s label algebra includes the undecidable theory of
Peano arithmetic.
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Abstract. Petri nets model systems with distributed state and syn-
chronised state changes. Extending them with rewriting rules allows for
evolving structure. In this paper, we investigate dynamic properties of
simple structure-changing Petri nets. We show undecidability of checking
a language-based notion of correctness even for very restricted classes of
structure-changing nets. We also introduce a colour-based abstraction
and use it to specify, and in special cases decide, reachability properties.

1 Introduction

Petri nets or place/transition nets [5] are system models where resource tokens
are moved around on an immutable underlying structure. They originally lack
a notion of structure change or reconfiguration, but several structure-changing
extensions have been formulated. We shall use dynamic transition refinement.

Petri nets are sometimes employed in the context of workflow modeling, where
tasks to be executed correspond to Petri net transitions labeled with the task
type. A theory of workflow nets has been devised [11]. An important property of
workflow nets is soundness, which is decidable (in the absence of extra features
such as reset arcs), and intuitively means the workflow can always terminate
correctly and there are no useless transitions.

Plain workflow nets lack the ability of representing dynamic evolution. This
shortcoming had been recognized by the community [12, 14]. Structure-changing
Petri nets offer a potential solution for dealing with dynamic change in workflows.
In this paper, we will consider workflow nets augmented with replacement rules.

Example 1 (A structure-changing Petri net derivation).

a
ρ

a a
a

a a

Like most extensions to Petri nets, graph transformation systems are Turing
complete, rendering any nontrivial property of all such systems undecidable.
? These authors’ work is supported by the German Research Foundation (DFG), grant
GRK 1765 (Research Training Group System Correctness under Adverse Conditions)
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In this paper, structure-changing Petri nets will be regarded as a model of ad-
verse influence, with structure-changing rules interfering with the intended sys-
tem behaviour. The rules, which occur unpredictably, model the influence of an
uncontrolled environment such as the dynamic addition of a component or the
unexpected complication or iteration of a task. We introduce restricted classes of
structure-changing Petri nets (where all nets involved are 1-safe, separable, even
acyclic sound workflow nets and structure changes are of a particularly simple
kind) and show the undecidability of inclusion of their language of net transition
events in a regular language. We also investigate reachability problems.

The results presented here have been achieved by simple means. When suitably
translated, they apply to many formalisms that add structure changes to Petri
nets, for example those cited in the related work section at the end of this paper.

The paper is structured as follows: Section 2 gives the definitions of structure-
changing Petri nets as well as structure-changing workflow nets and their dynam-
ics, in Section 3 we state our decidability and undecidability results, Section 4
draws parallels to existing work and Section 5 concludes with an outlook.

2 Structure-changing Petri nets

In this section, we review Petri nets in the sense of [5] and introduce structure-
changing Petri nets as special graph transformation systems.

Definition 1 (Petri net). A marked labeled Place/Transition net with coloured
places, short marked net, is a pair (N,M), where N is a 7-tuple (P, T, F−, F+,
Σ, l, c) called the net structure or simply net. Its components are a finite set P
of places, a finite set T of transitions and a finite alphabet Σ of labels (pairwise
disjoint), two functions F−, F+ : T × P → N assigning preset and postset arc
multiplicities, respectively, a label function l : T → Σ, a colouring function
c : P → N. The function M : P → N is the marking of the marked net.

When F−(t, p) = k, one says there are k arcs from p to t. Likewise, when
F+(t, p) = k, there are k arcs from t to p. When M(p) = k, it means that p is
marked with k tokens. When c(p) = k, we say that p has colour k. If a net is
named Nx with sub- or superscript x, the components will likewise be named
Px, etc. by convention. If there is no subscript, they will be referenced as P
and so on. If M : P → N, k ·M is the function P → N, p 7→ k ·M(p). The
pictorial representation of nets as graph-like diagrams, indeed the translation
to graph transformations, is very well known and has first been formalized,
to our knowledge, in [9]. A net is said to be (strongly) connected, or acyclic,
if it is (strongly) connected, or acyclic, as a graph, regarding arcs as directed
edges. A transition or place q of a net is said to be graph-reachable from another
transition or place q′ if (q′, q) is in the reflexive and transitive closure of the
relation {(x, y) | (y ∈ T ∧y ∈ P ∧F−(y, x) ≥ 1∨(x ∈ T ∧y ∈ P ∧F+(x, y) ≥ 1)}.
Isomorphism (N ∼= N ′) of (marked) nets has the usual meaning.
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Definition 2 (Transition firing). In a net N = (P, T, F−, F+, Σ, l, c), the
transition t ∈ T is said to be enabled in the marking M iff ∀p ∈ P, n ·F−(t, p) ≤
M(p). The successor marking Mt to M via t (if N is understood) is then defined
by ∀p ∈ P, (Mt)(p) = M(p) − F−(t, p) + F+(t, p). Recursively define Mu for a
sequence u ∈ T ∗ as Mε := M , Mau := (Ma)u. u is said to be enabled in M iff
Mu is defined. The triple ((N,M), t, (N,Mt)) is a transition firing event.

Note that the place colouring does not affect the behaviour of the net at all. It
will be used in Section 3 to specify abstract markings.

Definition 3 (Transition locality). The locality of the transition t ∈ T in the
net N = (P, T, F−, F+, Σ, l, c) is the net locN (t) := (Pt = {p ∈ P | F−(t, p) >
0∨F+(t, p) > 0}, {t}, F−|{t}, F+|{t}, Σ, l|{t}, c|Pt

): each component is restricted
to just the transition t and the places attached to it via arcs). Any connected net
with precisely one transition is also called a locality.

Throughout this paper, all replacement rules are of a simple “context-free” kind
that never depend on, or even add, any tokens.

Definition 4 (Rule). A context-free transition refinement rule, simply called
rule in the following text, is a pair % = (Nl, Nr) where Nl is a locality containing
only a transition t and the arcs and places attached to it, and Nr = (Pl ]
Pr,new, Tr, F

−
r , F

+
r , Σ, lr, cr) is a net structure which consists of the places of

Nl and possibly some new transitions and places, subject to ∀p ∈ Pl |F±l (p)| =
|F±r (p)| for ± ∈ {+,−}, and preservation of the place colours from Pl. Nl is
called the left hand side and Nr the right hand side of the rule.

Definition 5 (Rule match and application). A match of the locality Nl =
(Pl, {tl}, F−l , F+

l , Σ, {(tl, a)}) in the net N is a mapping m : Pl∪{tl} → P∪T . m
maps the transition tl of Nl to a like-labeled transition in N : l(m(tl)) = l(tl). m
maps the places pl ∈ Pl injectively to places in P such that F±(m(tl),m(pl)) =
m(F±l (tl, p)), and F±(m(tl), p) = 0 if p 6∈ m(Pl), for ± ∈ {+,−}. The notion is
extended to matches in marked nets: a match of Nl in (N,M) is simply a match
of Nl in N . A match of the rule % = (Nl, Nr) on a marked net (Ni,Mi) is a
match of Nl in Ni. An abstract application, with match m, of % to a marked
net (Ni,Mi) is a pair ((Ni,Mi), (Nj ,Mj)) such that if tl is the transition in Nl,
Tj = Ti − {m(tl)} + Tr, Pj = Pi + (Pr − Pl) (+ and − respectively denoting
disjoint set union and set difference), Mj coincides with Mi on the places from
Pi and has value 0 otherwise, the place colours are as in Ni and Nr, and

F±j (t, p) =





F±i (t, p) t ∈ Ti ∧ p ∈ Pi
F±r (t, p) t ∈ Tr ∧ p ∈ (Pr − Pl)
F±r (t, p′) t ∈ Tr ∧ p = m(p′)

0 otherwise

The triple ((Ni,Mi),m(tl), (Nj ,Mj)) is a rule application event.
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An event is either a transition firing event or a rule application event.

Example 2 (A rule match and application). In this example (Figure 1), there is
precisely one possible match of the left hand side. The rule % removes a transition
and replaces it with a net. Match and rule induce an application.

a
%

c

( )

a

↓ match ↓
c

( )

a

c

( c )

( )

a

Fig. 1. An application induced by a rule % and a match of its left hand side.

Definition 6 (Structure-changing Petri net). A structure-changing Petri
net S is a tuple (R, Σ,R, τ, s0, $), where R ∩ Σ = ∅, R is a finite set of rules,
R is a finite alphabet of rule names, s0 is a labeled Petri net (the start state), $
is a set of Petri nets (the set of terminal states). Relation τ ⊆ R×R assigns to
each rule one or more rule names. All nets (s0 and those occurring in the rules)
share the transition label alphabet Σ.

Definition 7 (Step Relations and Derivations). Every structure-changing
Petri net S defines for each x ∈ RS ∪ΣS a relation x⇒S between marked nets. If
x ∈ ΣS , the transition relation x⇒ is defined as the set of pairs ((N,M), (N,M ′))
such that M ′ = Mt and l(t) = x. If x ∈ RS ,

x⇒S is defined as the set of
pairs ((N,M), (N ′,M ′)) that are applications of rules % with τ(%) = x. Let
⇒S :=

⋃
x∈RS∪ΣS

x⇒S and ∗⇒S its reflexive and transitive closure.

An (abstract) derivation (w,ω, σ) of length n ∈ N in a structure-changing Petri
net S = (R, Σ,R, τ, s0, $) consists of a sequence w = r0 · ... · rn−1 ∈ (R ∪Σ)∗ of
labels, a sequence ω = e0 · ... · en−1 of events, and a sequence σ = s0 · ... · sn =

(N0,M0) · ... · (Nn,Mn) of marked nets such that ∀i ∈ {0, ..., n− 1}, si ri⇒S si+1

and, for some transitions xi, ei = (si, xi, si+1). We write s0
w⇒S sn.

A marked net s is said to be reachable in S from s0 iff there is a derivation in S
that starts in s0 and ends in s. The marked nets reachable in S are also called
(reachable) states of S. RS(S) denotes the set of all reachable states of S.
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Every marked net (N,M) with a specified set of terminal markings can also
be seen as a structure-changing Petri net with empty rule set and start state
(N,M), and will be called a static net. In a static net, instead of derivations one
simply considers transition sequences, as they uniquely determine derivations.

A net, rule or structure-changing Petri net is k-coloured if the highest colour
assigned to any place does not exceed k − 1. A marked net is k-safe if every
reachable marking has at most k tokens per place. A marked net (N,M) is
separable (strongly separable in [3]) if for any k ∈ N every transition sequence
enabled in (N, k ·M) is an interleaving of k transition sequences of (N,M).

Definition 8 (Terminal structure-changing Petri net language). Let S
be a structure-changing Petri net with start state s0. Its terminal language is

L$(S) := {w ∈ (Σ ∪R)∗ | ∃s ∈ $ s0
w⇒S s}

Also, let ĥ be the homomorphism that deletes all letters of R and leaves transition
labels Σ unchanged. L̂$(S) := ĥ(L$(S)) is the terminal firing language of S.

Given a structure-changing Petri net S, we denote by W (S) the set that com-
prises s0 and the right hand sides of all rules in R.
In the following, we introduce workflow nets [11] extended by structure-changing
rules as a special case of structure-changing Petri nets.

Definition 9 (Workflow net structure). A workflow net structure is a tuple
(N, (pi, po)) consisting of a Petri net structure N and a pair of distinguished
places pi, po ∈ P , the input and output place which have no input resp. no output
arcs, subject to the requirement that adding an extra transition from po to pi
would render the net structure strongly connected.

The data (pi, po) need not be made explicit, since these places are easily seen
to be uniquely determined in a workflow net. Thus we are justified in treating a
workflow net as a special Petri net.

The start marking of a workflow net structure N , i.e. the marking where only
the unique place with Σt∈TF+(t, p) = 0 is marked with one token and all other
places are not marked, is denoted by •N . The end marking where just the place
with Σt∈TF−(t, p) = 0 is marked with exactly one token is denoted by N•.

Definition 10 (Sound workflow net). A workflow net N is sound iff from
any marking reachable from •N , a marking is reachable where po is marked
exactly once, and for each transition t there is some marking M reachable from
•N such that t is enabled in M .

A structure-changing workflow net is a structure-changing Petri net whose every
reachable state is a reachable state of some workflow net, and whose terminal
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markings $ are workflow nets (N,N•) marked with their end marking, and whose
initial marking s0 is a workflow net (N, •N) with start marking.

Note that soundness implies boundedness and, as remarked in [13], replacing a
transition of a sound workflow net with a sound workflow net does not always
result in a sound workflow net.

Definition 11 (Simple structure-changing workflow net). A structure-
changing workflow net S is said to be simple if

(1) for every rule (Nl, Nr) ∈ RS , ∀p ∈ Pl(F−(tl, p) + F+(tl, p)) = 1,

(2) for every rule (Nl, Nr) ∈ RS , Nr is a sound workflow net structure, and its
start place is the start place of Nl, and (Nr,

•Nr) is 1-safe and separable,

(3) s0 is a 1-safe sound workflow net marked with its start marking.

(1) together with (2) implies that only single-input, single-output transition
localities are permitted as left hand sides. Although the restrictions rule out
markings with multiplicities, it is now possible to create more instances of a
subnet just by replacing transitions. Simple structure-changing workflow nets
can still capture situations such as workflows that undergo complications as
they are executed. The net structures in Example 2 are actually sound workflow
net structures; the nets of the lower row are marked with their start markings. As
a structure-changing Petri net, it also meets the requirements of Definition 11.

3 Analysis of structure-changing Petri nets

In this section, we investigate some decision problems for structure-changing
workflow nets. We show that language containment in a regular language is un-
decidable, but the word problem and abstract reachability problem are decidable
for a restricted class (acyclic simple structure-changing workflow nets).

We prove a series of lemmata that allow us to equivalently re-arrange derivations,
which will be convenient in later proofs.

Lemma 1 (Independence). Given a structure-changing Petri net S, if x ∈
RS , a ∈ ΣS , (1) (N,M)

x⇒S (N ′,M ′) and (2) (N,M)
a⇒S (N,M ′′) and the

transition of the match in (1) is distinct from the transition of the firing in (2),
then (N ′,M ′)

a⇒ (N ′,M ′′′) and (N,M ′′)
x⇒ (N ′,M ′′′) with

M ′′′(p) =

{
M ′′(p) p ∈ P
0 otherwise

Proof. Immediate from Definitions 5 and 2.

Lemma 2 (Permuting Independent Events). If S is a structure-changing
Petri net, for every derivation (w,ω, σ) of length n in S, under the conditions
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given below there is a derivation (wπ, ωπ, σπ) of same length such that σn ∼=
(σπ)n, and w = uabv and wπ = ubav. If a = wi corresponds to the event ei =
((Ns,Ms), ta, (Ns′ ,Ms′)) and b corresponds to ei+1 = ((Ns′ ,Ms′), tb, (Ns′′ ,Ms′′)),

Situation Sufficient condition for transposition
a ∈ Σ, b ∈ Σ ∀p ∈ P, F−(tb, p) > 0⇒ F+(ta, p) = 0
a ∈ Σ, b ∈ R ta 6∈ Ts − Ts′
a ∈ R, b ∈ Σ tb 6∈ Ts′ − Ts
a ∈ R, b ∈ R tb 6∈ Ts′ − Ts

Proof. a, b ∈ Σ: independent transitions can be transposed in an enabled se-
quence: in a net (N,M), if t1, t2 ∈ T are enabled in M and the above condition
holds, then Mut1t2v = Mut2t1v: t1 is enabled in Mut2, and by commutativity
of addition Mut1t2 = Mut2t1.

a ∈ Σ, b ∈ R: we use Lemma 1 and notice that the b-labeled rule can still be
applied, yielding the same result as ab. The argument for a ∈ R, b ∈ Σ is similar.

a, b ∈ R: since only the matched transition is replaced and all others remain
unchanged, the rules can be swapped without changing applicability or result.

3.1 Word Problem

We consider the word problem for structure-changing Petri nets.

Problem 1 (Word problem).
Given: a structure-changing Petri net S and a word w ∈ Σ∗
Question: w ∈ L̂$(S)?

It is a nontrivial question whether a certain word w occurs in the terminal firing
language of S. The question is decidable for simple structure-changing work-
flow nets by a search: while applying rules, one keeps track of the minimum
length of any terminal word in which each transition occurs. Transitions that
can only be used in words longer than w are not added. Rule applications are
always postponed per Lemma 2 until they are needed. The creation of redundant
transitions is limited by the definition.

Every word au of L̂$(S) is generated by a derivation (zau′, eω, sσ), z ∈ R∗,
ĥ(u′) = u. It either starts with the firing of a transition a (z = ε) or with a
rule application. When exploring the first case, we will query for a derivation
(u′, ω, σ). Otherwise, rule applications must be tried. Since replacement can go
on indefinitely, we again assume that the derivation has all rules postponed as
far as possible so that in the sequence z each rule depends on the previous one.

Minimum Word Length In a static net with start state (N,M0) and final states
$, let ‖ · ‖(N,M0) : T ⇀ N be the partial function assigning to each transition t
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of N the minimum length, if any, of a derivation using t and ending in a $. It is
undefined iff there is no such derivation, otherwise ‖t‖(N,M0),$ = min({|utu′| ∈
Σ∗ |M0utu

′ ∈ $}), where |w| is the length of a word w.

While calculating the minimum length might in general not be very efficient,
it is certainly possible for all sound workflow nets. Note also that transition
sequences in T ∗, not label words in Σ∗, are interesting.

Lemma 3. Let S be a simple structure-changing workflow net. If s0
∗⇒S (N,M),

and (N,M)
r⇒S (N ′,M ′) is an application of a rule (Nl, Nr) matching the

locality of a transition t, then each newly added transition t′ in T ′ − T has
‖t′‖(N ′,M ′),$ = ‖t‖(N,M),$ − j + j · ‖t′‖(Nr,•Nr),Nr

• ≥ ‖t‖(N,M),$, j being the
minimum number of occurrences of t in any shortest word utu′ ∈ L̂$(S).

Proof. We prove that a shortest word containing t′ in (N ′,M ′) must be a
word that is related by transpositions to a minimum length t-word that has
a minimum-length t′-word of (Nr,

•Nr) substituted for every occurrence of t.

Fact (1): a transition sequence v ∈ T ∗r is enabled in N ′ precisely when it is in
Nr (changing the Pl places to their images under m) and has the same effect on
the places of Pr − Pl +m(Pl) and zero effect on all other places.

Each transition sequence u that is enabled in M ′ can be permuted by repeated
applications of Lemma 2 to another equivalent sequence ũ where all firings of
T ′ − T transitions are moved as far as possible towards the end of the sequence
(by which we mean we chose an equivalent sequence whose image under the
homomorphism t 7→ (if t ∈ T then α else β) is minimal with respect to the
lexicographic order induced by α < β),

Using fact (1), and separability, the sequence ũ can always be decomposed as
ũ = x0 · y0 · ... · yn · xn+1, where xi ∈ T ∗ and yi ∈ (T ′ − T )∗ and (k · (•Nr))yi =
k · (Nl•), |yi| ≥ ‖t′‖(Nr,•Nr),{Nr

•}. because events involving (T ′ − T ) may move
to the right until hitting a transition firing event removing the token from the
output place m(po). Therefore, ũ is not shorter than a word using t. namely, the
word x0 · t · ... · t · xn+1, which is also a shortest word: otherwise, a shorter word
using t′ could be obtained by choosing the actual shortest t-word and replacing
each t with the shortest Nr-t′-word.

Up to now, it is not clear whether the word problem for structure-changing work-
flow nets is decidable. For simple structure-changing workflow nets, annotating
all transitions with the minimal word length limits the depth of the search for
the R∗-labeled prefix of the derivation. The definition of a rule guarantees that
repeated applications will not create unboundedly many parallel transitions.

Proposition 1 (Decidable word problem). The word problem for simple
structure-changing workflow nets is decidable.

Proof. We modify S to obtain a new structure-changing Petri net S ′: in the start
state (N,M), each a-labeled transition is relabeled to (‖t‖(N,M),$, a). Replace
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each rule ρ ∈ R by the set of rules {ρi | i ≤ |w|}, where the left hand side
transition’s label is (i, a) instead of ρ’s a, the transitions t′ of the right hand side
Nr are relabeled (i − 1 + ‖t′‖(Nr,•Nr),Nr

• , b) (where b is the old label of t′). All
transitions with i− 1 + ‖t′‖(Nr,•Nr),Nr

• > |w|, and places appearing only in the
pre-set of such transitions, are removed and do not appear in the rule variant ρi.
If this leaves no transitions, then ρi is discarded. This way, the first component
of each transition’s label always underapproximates the minimum length, and
strictly increases the counter except if ‖t′‖(Nr,•Nr),Nr

• = 1. This does, by design,
not impact the language.

Explore the set of reachable states of S ′. Start searching for appropriate deriva-
tions by either firing a transition whose label is equal to the next letter of the
word, if possible, or applying a rule to a transition whose pre-set place is marked.
The number of rules is finite and in every state, every rule has a finite number
of matches: the set of successor states is always finite.

To bound the depth of the search, until a transition is fired, each rule depends
on the previous one, and only a transition created by the last rule is fired. This
corresponds to moving all rules of a derivation as far as possible to the right,
and this is almost enough to guarantee termination. The transition eventually
fired could have the same label, pre- and postset as a transition replaced earlier,
but then some rule applications would have been unnecessary.

It is easy to check for cycles, which can only happen if the right hand side of
some rule of the modified system consists of a single transition locality.

The following algorithm may illustrate the procedure.

Algorithm 1 (Solving the word problem for L̂$(S))

u := ε
St := {s0}
repeat

repeat
for all s ∈ St do ; gather all relevant s z⇒S′ s′

for all pre-marked transitions t of s do
if 6 ∃s′′ ∈ St.s′ ∼= s′′ then

add s′ to St
until no new states found
St := {(N,Ma) | (N,M) ∈ St}
u := ua (∃u′ s.t. w = uau′)

until u = w

3.2 Reachability Problems

Since system states can be arbitrarily large nets, to specify interesting state
properties it is insufficient to specify the number of tokens on specific, concrete
places. Instead, we want to state these constraints generically, for all places of
a given colour. The place colours may carry a model-specific semantics, or just
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encode structural information about the net structure. In this subsection, we
therefore introduce the notion of an abstract marking: a vector that counts the
total number of tokens on places of each colour in a structure-changing Petri
net. First, we note that reachability of a given marked net is decidable.

Proposition 2 (Deciding the concrete reachability problem). The prob-
lem whether a certain marked net (N,M) is a reachable state is decidable for
simple structure-changing workflow nets.

Proof. All reachable states are bounded nets and the rules of S, finite in number,
are monotonic with respect to the size of the net. A breadth-first search along
the relation ⇒S hence decides the reachability problem.

We define c⊕(N,M) as the function N→ N, i 7→∑
p∈c−1(i)m(p). For k-coloured

nets, we restrict the domain of c⊕ to 0, ..., k − 1. The set of images under c⊕ of
the reachable states of S is denoted by ARS(S), for abstract reachability set.

Problem 2 (Abstract reachability).

Given a finite number k of colours
a vector č : {0, ..., k − 1} → N
a structure-changing Petri net S

Question reachability of č as an abstract marking

To obtain the following results, we introduce an auxiliary construction. To any
structure-changing Petri net one assigns a fixed static net recording the number
of times a certain rule has been applied, and how many tokens in total are present
in the places of right hand side nets created during a derivation.

Construction 1 (Plan) The plan of a k-coloured structure-changing Petri net
S = (R, Σ,R, τ, s0, $) is a k + 1-coloured net structure ν(S) where: the set of
places P ν is the disjoint union

⊎
NW∈W (S) p ∈ PW plus {pµ | µ ∈ match(R,W )},

the transitions T ν are those of the nets of W (S),
⊎
N∈W (S) t ∈ TW , plus {µ↑ |

µ ∈ match(R,W )}∪{µ↓ | µ ∈ match(R,W )}. The pre- and postset multiplicities
are those of the individual nets in W (S): (F±)ν(t, p) = F±(t, p) for N ∈W,± ∈
{+,−}, extended for the match transitions: F−ν(µ↑, pµ) = 1, F−ν(µ↑, p) = 1 if p
is the place in the preset of µ(tl), F+ν(µ↑, p) = 1 if p is the start place of the right
hand side of ρ, F+ν(µ↑, pµ′) = 1 if µ′ is a match on the right hand side of the
rule associated with µ. Σ and c are taken from the W nets and the places which
are not from any net in W are assigned the new colour. All transitions keep their
labels; the µ↑ and µ↓ have the corresponding rules as labels. Here, match(R,W )
is the set of all matches of rules R on nets of W . The start marking M̃ places
exactly one token on every pµ where µ is a match on s0, the places from s0 are
marked with the start marking of s0 in S.

Example 3 (A plan with start marking). Figure 2 shows ν(S) for a simple struc-
ture-changing workflow net S.
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ρ↑2 ρ↓2ρ↑1 ρ↓1
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a

Fig. 2. Plan of a system S with one rule as in Example 2, and start state s0 (below).
The rectangular boxes highlight the nets of W (S).

Definition 12 (Future Class). Let (N,M) be an acyclic marked net. The
future class F(N,M) is the set of all nets (N ′,M) that yield the same result
under the operation F , defined as follows: F turns nets into nets, preserving
only the places, transitions and arcs which are either places marked with a non-
zero number of tokens, or graph-reachable from a marked place, or belonging to
the locality of a transition graph-reachable from a marked place.

Lemma 4 (Future classes share similar behaviour). If two marked nets
(N,M) and (N ′,M ′) have the same future class, then neither the set of reachable
abstract markings nor the terminal firing language differ when comparing struc-
ture-changing Petri nets (R, Σ,R, τ, (N,M), $) and (R, Σ,R, τ, (N ′,M ′), $).

Proof. In any state s, any rule applied to the part of the state not in F (s) does
not lead into a different future class. In all other cases, if s, s′ in the same future
class, ∀s x⇒S s′′;∃s′′′ s′ x⇒ s′′′ with F (s′′) = F (s′′′), because no new arcs are
added to places or transitions not in F (s) or F (s′).

Proposition 3. The abstract reachability problem is decidable in a simple struc-
ture-changing workflow net S such that all nets in W (S) are acyclic.

Proof. By reduction to the Petri net reachability problem for (ν(S), M̃), whose
decidability is well known. Under the above acyclicity condition, a k-coloured
simple structure-changing workflow net S and ν(S) have similar sets of reachable
abstract markings, ARS(S) = {M |{0,...,k−1} |M ∈ ARS(ν(S), M̃)}.
The inclusion from left to right is shown by induction over the length of a
derivation (w,ω, σ), where all rule applications are moved as far as possible to the
right by applying Lemma 2 (in the same sense as in the proof of Lemma 3) such
that any rule application directly precedes the firing of a transition created by
it. If none of its transitions or their descendants by further rule applications are
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ever fired, the rule application has no effect on the reachable abstract markings
and simply moves to the end of the derivation, where it can be ignored.

Induction hypothesis: reachability of the state (N,M) with c⊕(N,M) = č in
S implies reachability of a marking M̃ with c⊕(ν(S), M̃)|≤k = č in ν(S), and
∃α : P ∪ T → P ν ∪ T ν mapping places of N to places of ν(S) and transitions to
transitions such that (1) ∀p ∈ P ν , Σp∈α−1(p)M(p) = Mν(p).

In the induction step one verifies that transitions corresponding to net transitions
can always be simulated, µ↑ transitions can be fired whenever the corresponding
rule occurs, preserving (1), and µ↓ transitions can be fired to get the number
of colour k tokens back down and move the tokens back to where they would
have been without the rule application, which results in the same future class.
Transitions left over at the right end of the word do not change the abstract
marking reached, which concludes the first half of the proof.

Conversely, to prove the inclusion from right to left we also require the existence
of a suitable mapping α in the induction hypothesis and construct a derivation
of S leading to the same abstract marking. In the induction step, if (ν(S),
M)

x⇒ (ν(S),M ′), we must again distinguish 3 cases regarding the transitions:
x corresponds to a firing of a net transition, or it is a µ↑ or a µ↓ event. If x ∈ Σ
corresponds to the firing of t in ν(S), there are two cases: since we can produce a
state of ν(S) (as in the first half of the proof) by letting it simulate a derivation
(w,ω, σ) of S, the event in ν(S) can correspond to a transition firing event in
the state si reached in S at a certain point.

However, depending on the distributions of the tokens on the places mapped
by α to the places in the ν(S)-preset of t, there may be no transition labeled
x such that α(x) = t enabled in si. This happens when the rule whose right
hand side contains t was used more than once and the tokens are scattered
over different instances. Then our reverse simulation must backtrack, (w,ω, σ)
must be permuted to another derivation that would enable a suitable x-labeled
transition: first note that enabledness of such a transition in a reachable state s of
S depends only on F(s), portions depending on replacing one of the transitions
of Ni ∈ W can be omitted from the derivation without changing the resulting
state and we are left simply with a firing sequence in Ni from some marking.
Using separability, this sequence is decomposed into an interleaving of firing
sequences in (Ni,

•Ni) such that one of the individual firing sequences leads to
a marking that activates the transition in question.

If t is a µ↑ transition in ν(S), it corresponds to application of a rule to an en-
abled transition (since the derivation has all rule applications moved to the right,
and also by Lemma 2 the rule application introducing a certain transition can
be moved directly before the first, and in our case only, firing of that transi-
tion). Finally, if t is a µ↓ transition in ν(S), it corresponds to forgetting a rule
application that has no further effects on F , concluding the proof.

Note how the first part of the proof still holds under more relaxed assumptions,
but the reverse implication crucially depends on simplicity and acyclicity.
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3.3 Containment Problems

In this subsection, we study the inclusion of the terminal firing language of a
structure-changing workflow net in a given regular language. The motivation
is that the regular language can specify all desirable net behaviour, and the
problem is to check whether any undesirable firing sequences exist or not.

Problem 3 (Regular Specification).

Given a regular language L ⊆ Σ∗
a simple structure-changing Petri net S

Question L̂$(S) ⊆ L?

It is well known that the emptiness of the intersection of two context-free lan-
guages is undecidable. Knowledge of context-free languages is now assumed.

Proposition 4 (Undecidability of abstract language compliance). Prob-
lem 3 is undecidable even when restricted to acyclic, simple structure-changing
workflow nets with no more than 2 tokens in every reachable state.

Proof. By reduction from the emptiness problem for the intersection of two
context-free languages. Let G1 = (V1, T, P1, S1) and G2 = (V2, T, P2, S2) be two
context-free grammars in Greibach normal form, w.l.o.g. with V1 ∩ V2 = ∅. We
construct the structure-changing workflow net S(G1, G2). s0 is as shown:

S2

a S1 b

Transition labels are used to encode the terminals and non-terminals of the
grammars. For G1, we use plain labels; for G2, we use overlined labels from
T := {a | a ∈ T}. For each production p = (X, aX1...Xn), the rule ρp replaces
a transition labeled X in the obvious way with a chain of transitions labeled a
(resp. a), X1 to Xn. Let the regular language L be a{aa | a ∈ T}∗b.
Every rule application leads to a net N(sf1, sf2) that is built exactly like s0
except that the special a and b transitions are linked by two chains of transitions
encoding a sentential form of G1 and one of G2. By disjointness of the non-
terminal alphabets, rules corresponding to productions of G1 apply only to the
chain encoding the sentential form derived in G1, same for G2.

For every word w ∈ L1 ∩ L2, there is a derivation (w′, ω, σ) with ĥ(w′) = w, by
converting a (context-free grammar) derivation in G1 to a derivation that starts
by replacing the transition labeled S1, and so on, likewise for G2. Then, all the
transitions can be fired, resulting in a word of L ∩ L̂$(S(G1, G2)).

Conversely, each word w ∈ L ∩ L̂$(S(G1, G2)) must be obtained by applying
rules that correspond to productions in the two grammars, and a word of L
(containing no non-terminals) can only be obtained by firing a, then stepping
through two copies of the same word w (one overlined), then firing b.
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S(G1, G2) is a simple structure-changing workflow net easily seen to have as
reachable states only acyclic nets marked with one or two tokens.

4 Related Work

Petri nets can be extended with structure changes via graph transformations,
as in [10]. Graph transformation systems [6] define derivation steps according
to rules that serve to reconfigure the Petri net dynamically and can be mixed
with transition firings. Their work, and ours, is thus closely related to graph
transformation systems and results from graph transformation such as local
Church-Rosser and concurrency theorems can be adapted, see [7, 10], but we
have concentrated on Petri net specific aspects in this paper.

Further noteworthy work includes the box calculus [4], reconfigurable nets [1]
and open nets [2]. The extensions cited here are much more general and allow
structure changes beyond dynamic transition refinement, at the expense of de-
cidability. Also, safe nets-in-nets [8] are somewhat similar to structure-changing
ones. With arbitrarily deep net token nesting, it is possible to simulate a a
2-counter machine with counters and zero-tests. Finally, in [13], a notion of re-
finement for workflow net similar to ours was investigated. Indeed, the notion of
separability was first introduced in that work.

5 Conclusion

Overview of the results (“+” means decidable, “−” undecidable, “?” unknown):

general simple acyclic simple
word problem ? + +
concrete reach. ? + +
abstract reach. ? ? +
regular spec. − − −

The word problem turns out to be nontrivial (especially when the formalism
is modified to allow creation of new parallel transitions, in which case it still
seems to be decidable). Proposition 4 places severe limitations on the algorith-
mic analysis of structure-changing Petri nets. Even for systems with a simple
structure and a globally bounded token number, language containment questions
are undecidable due to the possibility of imposing synchronisation on concurrent
context-free processes.

Structure-changing nets with arbitrary local replacement rules hardly seem to
offer promising analysis methods. It seems most fruitful to investigate classes of
nets that behave sufficiently like the “simple” ones presented here, and on the
other hand to apply general graph transformation analysis methods. We con-
jecture that the word and concrete reachability problems, but not the abstract
reachability problem, are decidable for general structure-changing workflow nets.
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We plan further work on decidable problems for relatively simple subclasses of
structure-changing Petri net. We hope that not all restrictions are really neces-
sary to obtain the decidability results and hope to better determine the bound-
aries of decidability of these problems. On the other hand, we must fill in the
left column of the above results table.
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Self-Developing Network : A simple and generic
model for distributed graph grammars.

Frédéric Gruau, Luidnel Maignan
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Résumé This work investigates what is the simplest way of rewriting
graph in a distributed way. Nodes of the graph are identified as inde-
pendent agents doing themselves the rewriting, hence the appellation
“Self-Developing Network” (SDN).

We first study the most general way of rewriting a single independent
agent-node. We define two complementary ways of selecting neighbors
based on link labels : an individual random selection allowing to process
neighbors one by one, and a collective selection allowing the creation
of connections towards arbitrary many neighbors. The resulting node-
rewriting rules can be applied in a distributed way, provided two neigh-
bors are never simultaneously ready. This constitutes our first working
definition of elementary SDNs.

This neighbor-exclusive requirement can be relaxed by using link ori-
entation and adjusting the semantic of rule application. The resulting
enhanced model can be programmed as a layer on top of elementary
SDNs. We finally obtain a definition of SDN that is : 1- simple enough
to be considered as canonical 2- not dependent on the particular scheme
used to achieve distributed execution 3- generic enough to allow many
other expressive notations, and a classification of existing well-known
models as specific SDNs.

Keywords: Self-developing network, massive parallelism, simulation,
formal system, graph grammar, distributed system

1 Introduction : motivation for a new model.

We believe there is a gap to be filled in the catalog of formal models describ-
ing parallelism : namely, systems where computing is synonymous of creating
exploitable parallelism. Informally, a Self Developing Network (SDN) consists of
a network of decentralized finite-state agents that update independently in paral-
lel. They can modify their states, but also produce other agents and connections
thereby “self-developing” the network.

Computing with SDN is synonymous of creating parallelism. An SDN not
only specifies a network of agents operating in parallel, it also encodes a parallel
development of that network which can grow arbitrary large out of a single
ancestor agent, and can also shrink back. An agent is very fine grain : it holds
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a single scalar data, so it cannot do anything meaningful by itself 1, therefore,
doing computation is synonymous to developing a network. An arbitrary large
set of n scalars can be processed, by developing a network of n agents. We
have been studying sorting and matrix multiplication in [3]. Each agent also
holds rules that will generate appropriate connections between agents, let them
communicate their scalar, and do the necessary computation in order to solve
the problem at hand.

Computing with SDN is synonymous of creating exploitable parallelism. There
exists already many formal parallel models : process algebra, pi-calculus, popu-
lation protocols. . .To our knowledge, they all use a global name space : a process
can communicate with any other, using its name or id. The use of global iden-
tifier implicitly requires a shared memory for communication, which is not con-
ducive to scalable parallel performance. In SDNs, communication is local : two
agents can communicate only if there exists a connection between them. When
generating new agent, connection inheritance is specified. In other words, graph
rewriting is done. Since the communication pathways are known at every instant
during execution, and are updated in a “continuous way”, the whole network of
agents can be dynamically mapped on hardware, or more precisely, continuously
re-mapped during development. The parallelism will be exploitable, if the de-
veloped network match the processor network of the target parallel hardware.
For example, it won’t be efficient to develop a 3D grid on a 2D mesh. The prob-
lem of an efficient parallel implementation of self-development is our long-term
project. In [3], we discuss the theoretical foundation, and in particular, how to
dynamically map the developed network on hardware.

We have been using SDNs for quite a long time to program real tasks, and
have become convinced of their generality. Several existing formalisms such as
so-called “edNCE” graph grammars, L-system or self-assembly system can be
considered as restrictions of SDNs. Special-purpose examples of SDNs exist in
the literature, a nice example [7] uses SDN to simulate the Von-Neuman self-
reproduction. The rules are devised so that while developing, each created agent
always has exactly three neighbors, which in turn, allows to bound the possible
rule application contexts. The goal of this paper is to give a formal definition of
SDNs on which the community can agree. It should be simple and generic. We
propose 3 steps :

1. Build Elementary SDNs which are simple to define but requires mutual
neighbor exclusion.

2. Use directed link in order to relax the requirements of mutual exclusion.
The resulting model can be programmed on top of elementary SDNs. It can
therefore be considered as a higher-level SDNs.

3. Add more programming layers, to either improve the expressiveness, or clas-
sify existing approaches as specific instances of SDNs.

1. When an implementation is considered [3], agents will keep moving through hard-
ware in order to accommodate development, therefore agents need to be lightweight.
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2 Elementary Self Developing Networks

Self Developing Networks (SDNs) consider networks of agents which can
communicate between local neighbors, and create new agents. Upon creation,
connection are also inherited locally : a created agent is connected to neighbors of
its parent agent. The formal tool to modify a graph in such a local way, is known
and studied as Graph Rewriting rule Systems [6] (GRS). A configuration is a
labeled graph (node and edge). The classic form of a graph rewriting rule includes
a left member and a right member which are both graphs. A rule application
involves two phases :

1. Matching the left member with a sub-graph of the graph being rewritten

2. Removing this sub-graph, adding the right member, and gluing it to the rest
of the graph.

The third volume of [6] is entirely dedicated to parallel GRS, however it
considers only how to formally construct a parallel composition of rewriting rules.
By contrast, SDNs can be informally defined as distributed GRS which consider
a distribution of the network onto several processing elements and would like to
execute concurrently several rewrites concerning different parts of the network.
In general, distributed rule application involves a difficult partition problem : the
graph has to be partitioned into disjoint sub-graphs forming valid left members
for different rules. First, matching a sub-graph is itself a difficult operation since
it is a graph homomorphism, which is known to be NP complete. Second, there
may be many possible ways of partitioning.

Section Outline. We will defined SDNs rewriting rules as the minimum num-
ber of restrictions to add to generic graph rewriting rules in order to obtain a
distributed-GRS. We are interested by the computation that can be done by
the developing network, we therefore have to define the inputs and outputs. Fi-
nally we introduce elementary SDNs which just need an additional constraint of
mutual exclusion ensuring a decentralized execution.

2.1 Node rewriting Rule

As a first requirement, we impose that the replaced subgraph is reduced to
a single node, such rules are usually called node-rewriting rule. node rewriting
greatly simplifies the partition problem, we know that each partition contains
exactly one node, what is left to do is partitioning the edges. We will present
two equivalent method for that purpose : by mutual exclusion, and by link ori-
entation. More importantly, with node rewriting, the network being rewritten
becomes like a “growable parallel hardware”. We can imagine that the nodes
are independent agents doing locally the matching, adding, and gluing in a dis-
tributed way ; hence the appellation “self developing network” Some examples
of Node-rewriting rule such as EdNCE graph grammar [6] have been proposed
in the literature of graph grammar. In this paper, by node-rewriting we mean
the most generic rewriting that can be done by a node, while still allowing for a
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distributed execution between different nodes. Consider an agent a in the pro-
cess of creating n new agents indexed by i = 1 . . . n. We now need to answer
the following question : how can a specify new connections between those n new
agents, and also between the former neighbors of a, in the most generic way ?
Let q ∈ Q be the node’s label also called the agent state, and let l ∈ L be the
connection’s labels. Because we want agents to be independent, our agent a can-
not access the state of its neighbors. Its local view is therefore the set C(a) of
its connections labels. Since a given label can appear several times for distinct
connections, C(a) is in fact a multi-set of labels. An agent cannot distinguish
between two neighbors connected via links carrying the same label l, which we
will call l-neighbors. Let |a|l be the number of l-neighbors for a given label l. In
order to be able to bind neighbors individually, whenever |a|l > 1 , a needs to
do a prior non-deterministic indexing of labels li, i = 1 . . . |a|l of its l-neighbor.

New connections are specified using a connecting triplet (lnew, v1, v2, ), with
the new connection label lnew and the extremities v1, v2 which can be either of :

1. a newly created agents, specified by its index in {1 . . . n} ;

2. an individually bound neighbor specified by an indexed label li, i ∈ 1..|a|l ;
3. all neighbors having a given label l ∈ L, and not individually bound, in

which case, up to |a|l connections can be created simultaneously.

The third connecting mode is called collective binding, and allows to handle
arbitrary large contexts, with a finite list of connecting triplets. Such bindings
are necessary, because the number of neighbors for a given agent can grow ar-
bitrary large through development. Collective bindings can be used only for one
extremity v1 exclusive v2 in a connecting triplet (lnew, v1, v2, ). If it was used for
both v1 and v2, the number of created connections would be quadratic with re-
spect to the degree of a node. For example, an agent with 10 connections labeled
l1 and 10 other connections labeled l2 would create 100 connections labeled lnew
with a connecting triplet (lnew, l1, l2, ). In the following definition, Ĉ is the set
obtained from C by attributing a unique index to the different occurrences of a

given label. For example ̂{x, x, y} = {x1, x2, y1}.

Definition 1. A node rewriting rule is given by (q0, C)→ (q1, . . . qn, c1, . . . cm)

where C ∈ NL, qi ∈ Q, cj ∈ L× ({1 . . . n} ∪ Ĉ ∪ L)2.

An agent can fire this rule, if its state is q0 and its context contains C. More-
over, its context should not contain labels l, if l-neighbors are never bound by
any triplet, neither individually, not collectively. This is usefull to implement
synchronisation mechanisms. The agent applies the rule by indexing its neigh-
bors, deleting its connections, creating n new agents with state q1, . . . , qn and
creating connections according to each connecting triplet c1, . . . , cm. The goal of
this definition is just to give a precise formalization, at one point in this paper.
This concept of node-rewriting rule can be applied to different network structure.
In this paper we consider undirected networks and then directed networks. For
designing examples of rules, we will always use an intuitive graphical convention,
that avoid the use of indexes. We will consider two kinds of collective binding :
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one in which at least one neighbor must be present, and the other one where
there can be zero neighbors, represented using respectively the symbol ’+’ and
’*’, a common notation of formal language theory. The ’+’ form is a syntactic
sugar, easily encoded using the ’*’ and an individual binding.

2.2 Undirected Node rewriting Rule

As we search for the simplest model of self development, it makes sense to
consider first the simplest network structure : undirected labeled graph, we will
adjust the definition to consider directed network in subsection 3.1.

Definition 2. An undirected node rewriting rule is a node rewriting rule acting
on undirected networks
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Figure 1. node rewriting rules developing all serie-parallel graphs : (a) Rules for par-
allel and serial creation. The symbol ’+’ codes for collective binding, with at least one
link present. (b) Example of execution.

For such rules, in a connecting triplet (lnew, v1, v2, ), the order between v1 and
v2 does not matter. Figure 1 describes an undirected rule which develops any so-
called serie-parallel graph. The rules are described with the following graphical
convention : The left member locates bound neighbors by placing them around
a light-gray disc showing the label of bound connections, the right member re-
produces the same disk, and assumes the bound neighbors conserve the same
location on that disc. The rule in fig. 1 (a) uses three integer labels x, y ∈ {1, 2, 3}
which are used to distinguish two sets of labels between left and right. In the
left member, x and y can be any of these three numbers, with x 6= y. An agent
rewrites into two agents, in two possible ways 2.

1. In the “parallel” rewriting, all the links are duplicated, one copy for each
new agent.

2. In the “serial” rewriting, one agent get x-links, and the other y-links. A link
with label 6− x− y is added to connect them.

2. If an agent match two rules or more, one can either define a priority on rules or
choose non deterministically.

95



The label 6−x−y is the third possible label z ∈ {1, 2, 3}\{x, y}. It ensures that
any generated nodes will always have exactly two of the three possible labels
within their neighbors, except the extremity nodes which have only one, and
cannot rewrite. All the agents have the same state, which can be ignored. The
SDN is ever-growing : development never stops, network size always augment.
The figure shows a development starting from an initial network of three nodes.
The central node does one serial division , one offspring does two parallel divi-
sions, and then the other does one last parallel division during which the three
links labeled 3 are collectively bound and get duplicated.

2.3 Providing input-output with grounded node-GRS.

We call node-GRS a Graph Rewriting System, including a set of node-
rewriting rules plus an initial network. The initial agents are called the “an-
cestors”, all the other generated agents being the descendants. A directed (resp.
undirected ) node-GRS is a node GRS whose rules are directed (resp. undi-
rected). In order to define a computation, we need to “ground” the node-GRS
with ports carrying the inputs and the outputs. We define hosts as designated
ancestors which remain present during the whole execution. Connections to the
hosts are called port and also persist, thus the number of hosts and ports is a
constant of a given node-GRS. The port’s labels is used as a memory shared by
the host, and the developing network. Reading and writing this label amounts to
input and output values as shown in fig. 2 (c1,c2). The host program is specified
externally. In the following example, we assume that the left (resp. right) host
only writes (resp. reads).
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Figure 2. A grounded node-GRS implementing a buffer ; Hosts are drawn as an elec-
trical ground. x ∈ N, ε and ω are special labels. (a) Root agent (disc) (b) data agent
(circle) (c) Host read, and write, which rule is applied is under external control. (d)
Example of execution.

Fig. 2 (a)(b) represents a grounded node-GRS implementing a buffer. The
buffer uses only individual binding. Buffer agents have two states : root and data.
Fig. 2 (d) shows an execution. The agents are organized in a line starting with a
writing host, followed by one root, several data-agents, and a reading host. The
buffer initial configuration needs to contain one data-agent.
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An agent is called ready if at least one of the rules is matched. The root is
ready when it has an integer on one edge and the markup ω on the other edge,
which distinguishes right from left. A data-agent is ready when it has an integer
on one edge, and the empty label ε on the other. The root-agent updates by
inserting a data-agent which stores an integer data item on its left connection.
Data-agents update by suppressing themselves and make the next data item
available for reading. The buffer has no capacity limit, since the creation of
new data-agents augments the available memory on the fly. At step 2 and 4 the
number 2 and 3 are stored by data-agent into to the buffer, the number 2 is
retrieved at step 4, and can be read.

The buffer example illustrates that a developed network has an inner state,
and can be reused and modified indefinitely, depending on the hosts’ program :
The hosts can push and pop values indefinitely and generate infinite derivations.
Alternatively, if all the hosts remain idle at some point, the execution may reach
an idle configuration, where no further rewriting is possible. Such a system can
be used to compute a function : the hosts will first input values through the ports,
and then retrieve values computed from the developed circuit. The buffer uses
a single input and output port. In general, one should provide many ports for
parallel inputs and outputs, otherwise the parallelism inherent in the developed
network cannot be exploited.

2.4 Simple Definition of Elementary SDNs

In a decentralized distributed execution, at a given time t, any agent which
is ready (i.e. which context matches a given rule’s left member) may decide to
rewrite. Thus, a network configuration c1 develops into c2, by rewriting a subset

A of the ready agents. This parallel rewriting step is noted c1
A−→ c2.

A node-GRS for which two neighbor agents can never be simultaneously
ready is called neighbor-exclusive. Such a system can be executed in a decen-
tralized distributed way, because any agent that rewrites is guaranteed that its
neighbors will not, and can safely be used as stable anchors for receiving new
connections.

Definition 3. An elementary Self Developing Network (SDN) is a neighbor-
exclusive undirected node-GRS.

The serie-parallel GRS is not neighbor exclusive, the two agents doing the
parallel division are adjacent, and simultaneously ready. Should the two agents
decide to divide simultaneously, we would not know what to do. So decentralized
executions are not defined.

The buffer GRS is neighbor exclusive, : only the left writing host and ei-
ther the right reading host or an already read data agent can be simultaneously
ready, in which case they are separated by the data agent having a label ω on
the left. In other words, reading and a writing the buffer can be done simultane-
ously, while still enforcing neighbor-exclusion. This proves that the buffer is an
elementary SDN. Note that a node-GRS can always be made neighbor exclusive
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using randomness, by adding a rule implementing a random local tournament
between simultaneously ready neighbors, and blocking one of the two (or both
in case of equality). Proposition 1 illustrates the simplicity of elementary SDNs :

Proposition 1. Deterministic elementary SDNs are strongly confluent.

Proof : Consider two distinct parallel rewriting step, and let E (resp. F ) be
the set of agents involved. Because of determinism, the agent in E ∩ F apply
the same rule. Because of neighbor-exclusion, two agents which update simulta-
neously, are not neighbor, and do not influence each other. Rewriting agents in
F \ E (resp. E \ F ) will therefore lead to the same configuration, obtained by
rewriting agent in E ∪ F .

3 Higher Level Self Developing Network.

In our quest for reaching the simplest possible definition of SDNs, we gave
the requirement of mutual exclusion. While this is probably a fundamental key
for the simplest definition, it is also a bit awkward, since it is the task of the
person who designs the GRS to ensure mutual exclusion. There exists other ways
of specifying development, that does allow simultaneous rewriting of adjacent
nodes.

3.1 Directed node-rewriting rules

 p
 

  
(b)

 p
   p    p

(a)  
  
  p
p

Figure 3. A directed rule developing a p-agent into a parity network. (a) Two rewriting
rules. The empty disc represent idle agents. (b) Execution with two recursive rewriting.
Each of the two host is a single node.

Using oriented connections allows to partition the network naturally : one
simply decides that each connection belongs to the node which is at the source,
while the target agent is considered to be pointed by the connection. Outgoing
connection are owned, incoming are not. Having partitioned the network into
disjoint left members, one can now perform simultaneous rewriting of adjacent
nodes.

We need to modify the semantic of rule application as follows : an agent is
not deleted upon rewriting. We must specify connections for it, using connecting
triplets, just like other created nodes. The preserved agent can then be used as a
stable gluing point for a given input neighbor, updating simultaneously. Bounded
connections are deleted, and new connections specified by the right member of

98



the rule are added. Connections that are not bound, implicitly remain on the
preserved agent.

Definition 4. A directed node-rewriting rule is a node-rewriting rule acting on
directed networks. Link orientation defines ownership, agents are preserved, and
serve as gluing points.

In comparison with definition 2, the link’s label need to be coupled with
a boolean encoding whether it is an incoming or outgoing link. Moreover, in
a connecting triplet (lnew, v1, v2), the order between v1 and v2 now matters.
It indicates the orientation of the created link. Furthermore, the semantic of
ownership imposes some constraints on the rule : Since an agent can modify
only the owned connections, only those can be used in connecting triplet. Not
owned link can be bound in the left member, only for testing their presence or
absence. Not-owned link remain on the preserved agent. This is used in our
graphical notation, to identify the preserved agent in the right member without
having to introduce another markup : the preserved agent is the one who gets
all not-owned links, for example in fig. 3 it is the XOR.

If an agent owns all its connections, it does not need to be preserved and can
be deleted. Such a rule is called owner-all. If all rules are owner-all, the system
itself is called owner-all and is neighbor-exclusive. A rule which deletes its active
agent is implicitly owner-all. A rule can also be owner-all for synchronization.

3.2 Examples of Directed node-GRS

Fig. 3 (a) represents a directed rule acting on a node labeled p. It develops
a network computing the parity function, i.e. it inputs booleans, and returns
true if the number of true input is even. This development uses only individual
binding. Ownership is represented using a tiny black disk at the owner extremity.
The owned links correspond to the inputs of the parity function. Rewriting a
node labeled p is either recursive, or gives an idle node, which is used just for
duplicating signals and can be removed in a second step.

Since a node labeled p has two possible rewritings, the parity rule is not
deterministic, it can generate an infinite family of parity networks. Fig. 3 (b)
shows an execution with two recursive steps, starting from an initial configura-
tion with one writing, and one reading host represented as electrical ground. The
execution generates a new port for each recursive rewriging. Two such recursive
rewriting generates a network which can compute the parity of three inputs us-
ing two chained XORs. If we want to generate a network for exactly n inputs,
we would need to include a loop counter in the agent labeled p, initialize to n,
decrement at each recursion and do the non-recursive rewrite when it reaches 0.

Consider now the generic problem of simulating boolean circuits. Fig. 4 (a)
shows how a XOR gate rewrites like a synchronous data-flow gate : it consumes
two tokens on its incoming links, and generates one token on the outgoing link.
The link labels encodes a single token encoded by a label 0, 1 or empty. The
synchronisation is implemented by an owner all rule : A gate needs to own all its
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Figure 4. (a) Rule for computing a XOR (b) Rule for developing a XOR (c) Simulta-
neous development of the two adjacent XORs of fig. 3 (b).

links, before it can fire. It then gives back ownership to the neighbors. Fig. 4 (b),
shows how a XOR gate can be rewritten using only OR, AND, and NAND gates.
Here collective binding is used : the unique incoming links of the rule will bind
two connections. This reflects the symmetry between the two inputs which are
both sent to the NAND gate and to the OR gate.

The parity-GRS shows how a data-flow graph can be developed, using rewrit-
ing rules which either create new nodes for development or modify labels and ori-
entation for communication and computation. This “dynamic data-flow graph”
still has two problems :

 p p
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   p p p
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Figure 5. Grounding the parity self-develoment : (a) Bits communicated by hosts 1
. . .i, at step i. (b) Parity Rule preserving ports (c) non recursive case.

1. An agent cannot statically distinguish between boolean inputs and outputs 3.
We do have a link orientation, but it is used for synchronization, and is
constantly flipping back and forth. Thus it cannot serve a second purpose.

2. The parity-GRS is not grounded, since ports are created non-deterministically.

The first problem is solved by representing a programmed orientation ; using
two ”opposite” label : for example L and R for right and left. The label is
systematically negated when ownership is flipped ; The second problem is solved
by having all the ports exists in the ancestor, and rewrite the p-agent as many
times as needed to take them into account. For this purpose, the ports must be
distinguishable, which is done sending on each ports a distinguishing bit shown

3. The figure makes falsely believe that a gate can do that, because of the gate
pictorial representation which is not a symmetric circle.
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fig. 5 (a). Using the rule fig. 5 (b,c), after the first iteration , the first port is
distinguished, then the second, and so on. . .
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rule (a,b) 

ε

Figure 6. Buffer implemented as a directed node-GRS. (a) Root agent’s rule(b) Data
agent’s rule (c) Host’s rule (d) Execution.

The link orientation leads to a more concise higher level representation : In
fig. 6 the buffer now needs a single ancestor and no ω markup.

3.3 Simulation of directed GRS by elementary SDN

(a) x x x

...

...

q
z
...a z ...

...

a z
...a z

qa
a z z(b) a

Figure 7. The bipartite transformation (a) Insertion of an edge-agent on each edge.
(b) Representation as a directed node-GRS.

The main result of this paper states that directed node-GRS can be con-
sidered as higher-level SDNs, where higher level than means “programmed on
top with no performance loss” 4. The converse is shown in [2], therefore the two
formalisms are really equivalent, and the definition of self-development does not
depend on the particular choice we make, to enable distributed rewriting.

Theorem 1. Directed node-GRS are higher-level SDNs.

4. More precisely, the encoding does not augment the amount of information needed
to build the network, up to a constant factor, and each rewriting step is simulated using
a constant number of parallel steps (3 steps).
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Proof sketch : Let S be a directed node-GRS. We “compile” it as an ele-
mentary SDN φ(S). We illustrate the compilation for S = the directed buffer of
fig 6. We first compile rules using only individual binding, For each label l of S,
φ(S) needs four labels noted l, l̇, l, l̇ called scalar labels, plus three fixed labels
denoted by Greek letters α, β, δ. We encode a directed network as an undirected
one, by inserting an agent called edge-agent on each directed link labeled l, as
shown in figure 7 (a) An edge-agent has two connections : one to the owner,
and one to the output agent. The original label l is copied on both connections,
but with a dot above it (l̇) on the connection towards the owner, in order to
encode the orientation. The original agent itself remains untouched and is called
node-agent. Note that this transformation amounts to do a single rewriting step
of a directed node-GRS, as shown in fig. 7 (b) 5.

One step of parallel rewriting in S c1
A−→ c2 is simulated in three steps of

parallel rewriting in φ(S), illustrated in fig. 8.

δ

α β

δ
  

ε 22

 22

  
ε 2

33  
ε ε

33

Node 
update  

Edge 
update 1 3 3

  
Edge 
update 2

3 3ε ε 22

α α

Figure 8. Execution of the directed buffer’s simulation, for step 4 of figure 6 (d)

1. Node-agents add one edge agent on each created connections.

2. Edge-agents simplify and restore one edge-agent per connections

3. Edge-agents restore the labeling corresponding to the bipartite encoding.

Step 1 in φ(S) : A node-agent is called a master, because its rules are compiled
from the simulated system S, as an example, fig. 9 (a) (resp. (b, c1 and c2)) shows
the compilation of the buffer’s root (resp. data agent, host read and write). The
links to edge-agents corresponding to not-owned connection, are preserved and
labeled by α. For each created connections labeled l, a new edge-agent is inserted
with labels (β, l) or (β, l̇) 6 (resp . (l, l̇)) if l connects a neighbor to a new agent,
(resp. two neighbors or two new agents). The label β is inserted towards the
neighbors, so that it will always pair with an α link. On the other hand, an α
link can be paired with an underlined scalar label.

Step 2 in φ(S) : Edge-agents are called slaves because they execute a fixed
rule shown in fig. 9 (d,e,f). They receive orders from the master who owns the

5. Encoding is a special case of development, though, since the domain and codomain
of the rewriting are distinct, and each node is rewriten once, and exactly once.

6. The label l is dotted, if ownership is kept, which is never the case for the buffer.
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Figure 9. Simulation of the directed buffer. (a,b,c) compiled rule for a node agent
including root agent, data agent, host , idle agent. (d,e,f) edge-agent’s fixed rule. In
rule (d), the symbol ’∗’ denotes a collective binding of possibly zero neighbors

edge. which let them replace themselves by a link. An order is encoded as a link
labels : The β means “let you simplify by pairing with an α and generate δ”
(rule(d)). Here, the δ is a forwarded order meaning “final label is not known yet,
wait and see !”. The owner of a connection to a neighbor n can create arbitrary
many connections to n or none at all. As a result, the edge-agent of rule (d), can
get arbitrary many β connection or zero.

The α means “let you simplify with either β or a scalar label (rule (e)), in
which case preserve the scalar if it is an owned link, and underline it” or else
generate δ. This δ will be next to an underlined scalars.

Step 3 in φ(S) : With rule (f), δ is replaced by the complement of the other
edge agent’s link label. where complement(l) = l̇, and complement(l̇)= l. The
effect is to restore the encoding of the orientation. The role of underlined label
l, l̇ is to prevent a node-agent firing before all its edge-agents are done. In other
words, it ensures the neighbor-exclusive execution.

The simulation of one complete step needs that all the node-agents update,
including those representing idle agents 7. This is done by imagining that idle
agents apply the idle rule shown in fig. 10 (a), and simulate that. The compilation
of the idle rule is shown in fig. 10 (b). It needs the simulation of collective binding,
which we will do now using an additional fixed label χ. Consider the compilation
of a collective binding creating multiple connections carrying label x to all y-
neighbors. In step 1, the node-agent insert an edge-agent with link label (x ,χ),
where x will be doted or not, depending on orientation. Before beginning step 2,
the edge-agent does an extra iterative processing that will create one edge-agent
for each x-neighbor, using repetitively rule fig. 10 (c1). When no link labeled
ẋ is left, then, rule (c2) ends the processing 8. The combined effect of collective
binding and individual binding in rule (c1) illustrates well their complementarity,

7. An agent is idle, either because it is not ready, or because it is not in the set A

of the considered transition c1
A−→ c2.

8. Here, it is compulsory that rule c2 has a lower priority than rule c1
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and the resulting expressiveness for node rewriting rule : it enables an iterative
processing, link by link.
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Figure 10. Simulation of Collective binding. (a) the idle rule (b) compilation of the idle
rule (c1,c2) edge-agent rule inserting iteratively one edge-agent for each link labeled ẋ.
The circle above the labels means that it can be either a dotted, or not dotted label.

4 Yet Higher level Self-Developing Network.

4.1 Other Syntax for programming Higher level SDNs

Encoding a link orientation is just one way of enriching the network data-
structure, and then exploit this added information with an appropriate rule
syntax. In [1], we explore many others possible ways, and proved that they also
are higher level SDNs, by programming them using directed node-GRS.

1. Transitive SDN redirect the input connections to distinct created agents,
instead of simply preserving them on the same persistent agent.

2. Programmed orientations can be defined on top of the orientation defining
ownership. It can be used to distinguish left from right in a sequence of
agents, or up from down in a tree.

3. Flags on connection extremities provide a local memory per connections, and
make it easier for an agent to manage its connections without interfering with
the neighbors. For example, one can index the connections locally.

4. Combining directed and undirected link ; An undirected link cannot be modi-
fied except for acquiring ownership by setting an “ownership extremity flag”,
and thus orienting the link. If both extremities try to acquire ownership, a
random choice is made. This break symmetry at system level.

4.2 Classification of existing SDNs.

Well known systems can be also programmeed on top of directed node-GRS,
and classified as specific type of SDNs.

1. SDN with ever-growing Network : EdNCE graph grammar in [6] describes
a sub class of directed systems using only collective binding, forbidding cre-
ation of connections between neighbors. Thus if two nodes are not connected,
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they will never be in the future. EdNCE Network do not remove node, in-
deed, when removing nodes, connecting neighbors together is indispensable
to maintain the connectedness.

2. SDN with acyclic network : L-systems are grammars introduced by Linde-
meyer [5] to model the development of algae and plants. The object being
rewritten is a string using brackets representing a compact encoding of a tree.
It can be programmed as a directed SDN, where the network is acyclic : in
other words it is a tree. A simulation of context-free L-systems need edge-
agents to synchronize the rewriting of all node-agent.

3. SDN with a constant number of agents : Self assembly system focus on main-
taining a specific subset of connections for persistent pairwise communica-
tion, or for progressive assembly of a structure, between robots or molecules.
As a result, a dynamic network is built and maintained. Klavins [4] use
node-GRS to move interacting robots so as to cover a given region. Rules
can create or delete connections, and trigger agent movement.

4. SDN with a fixed network : If the rules neither creates nor deletes agents
or connections, the network is preserved. Such a degenerated SDN is called
”static” and models a fixed network of finite state automata. There are two
widely studied families of automata network : Artificial Neural Networks
(ANNs) and Cellular Automata (CA). Moreover, static SDN can model real
hardware. The same vocabulary, principles and methods can be used for
simulating SDN on real parallel hardware, which is the long term goal of our
project.
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More on Graph Rewriting
With Contextual Refinement

Berthold Hoffmann

Fachbereich Mathematik und Informatik, Universität Bremen, Germany

Abstract. In grgen, a graph rewrite generator tool, rules have the out-
standing feature that variables in their pattern and replacement graphs
may be refined with meta-rules based on contextual hyperedge replace-
ment grammars. A refined rule may delete, copy, and transform sub-
graphs of unbounded size and of variable shape. In this paper, we show
that rules with contextual refinement can be transformed to standard
graph rewrite rules that perform the refinement incrementally, and are
applied according to a strategy called residual rewriting. With this trans-
formation, it is possible to state precisely whether refinements can be
determined in finitely many steps or not, and whether refinements are
unique for every form of refined pattern or not.

1 Introduction

Everywhere in computer science and beyond, one finds systems with a structure
represented by graph-like diagrams, whose behavior is described by incremental
transformation. Model-driven software engineering is a prominent example for
an area where this way of system description is very popular. Graph rewrit-
ing is a natural formalism for specifying such systems in an abstract way, ever
since this branch of theoretical computer science emerged in the seventies of
the last century [8]. Graph rewriting has a well developed theory [4] that gives
a precise meaning to such specifications. It also allows to study fundamental
properties, such as termination and confluence. Over the last decades, various
tools have been developed that generate (prototype) implementations for graph
rewriting specifications. Some of them do also support the analysis of specifica-
tions: agg [9] allows to determine confluence of a set of rules by the analysis
of finitely many critical pairs [17], and groove [18] allows to explore the state
space of specifications.

This work relates to grgen, an efficient graph rewrite generator [1]. Edgar
Jakumeit has drastically extended the rules of this tool, by introducing recursive
refinement for sub-rules and application conditions [15]. A single refined rule
can match, delete, replicate, and transform subgraphs of unbounded size and
variable shape. These rules have motivated the research presented in this paper.
Because, the standard theory [4] does not cover recursive refinement, so that
such rules cannot be analyzed for properties like termination and confluence,
and tool support concerning these questions cannot be provided.
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Our ultimate goal is to lift results concerning confluence to rules with recur-
sive refinement. So we formalize refinement by combining concepts of the existing
theory, on two levels: We define a grgen rule to be a schema – a plain rule con-
taining variables. On the meta-level, a schema is refined by replacing variables
by sub-rules, using meta-rules based on contextual hyperedge replacement [3].
Refined rules then perform the rewriting on the object level. This mechanism is
simple enough for formal investigation. For instance, properties of refined rules
can be studied by using induction over the meta-rules. Earlier work [14] has
already laid the fundaments for modeling refinement. Here we study conditions
under which the refinement behaves well. We translate these rules into standard
rules that perform the refinement in an incremental fashion, using a specific
(“residual”) rewriting strategy, and show the correctness of this translation.

The examples shown in this paper arise in the area of model-driven software
engineering. Refactoring shall improve the structure of object-oriented software
without changing its behavior. Graphs are a straight-forward representation for
the syntax and semantic relationships of object-oriented programs (and models).
Many of the basic refactoring operations proposed by Fowler [10] do require to
match, delete, copy, or restructure program fragments of unbounded size and
variable shape. Several plain rules are needed to specify such an operation, and
they have to be controlled in a rather delicate way in order to perform it correctly.
In contrast, we shall see that a single rule schema with appropriate contextual
meta-rules suffices to specify it, in a completely declarative way.

The paper is organized as follows. The next section defines graphs, plain
rules for graph rewriting, and contextual rules for deriving languages of graphs.
In Sect. 3 we define schemata, meta-rules, and the refinement of schemata by
applying meta-rules to them, and state under which conditions refinements can
be determined in finitely many steps, and the replacements of refined rules are
uniquely determined by their patterns. In Sect. 4, we translate schemata and
meta-rules to standard graph rewrite rules,and show that the translation is cor-
rect. We conclude by indicating future work, in Sect. 5. The appendix recalls
some facts about graph rewriting.

2 Graphs, Rewriting, and Contextual Grammars

We define graphs wherein edges may not just connect two nodes – a source to
a target – but any number of nodes. Such graphs are known as hypergraphs in
the literature [11].

Definition 2.1 (Graph). Let Σ = (Σ̇, Σ̄) be a pair of finite label sets.
A graph G = (Ġ, Ḡ, att , `) consists of two disjoint finite sets Ġ of nodes and

Ḡ of edges, a function att : Ḡ → Ġ∗ that attaches sequences of nodes to edges,
and of a pair ` = ( ˙̀, ¯̀) of labeling functions ˙̀ : Ġ→ Σ̇ for nodes and ¯̀: Ḡ→ Σ̄
for edges.1 We will often refer to the component functions of a graph G by attG
and `G.

1 A∗ denotes finite sequences over a set A; the empty sequence is denoted by ε.
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Fig. 2. A refactoring rule

A (graph) morphism m : G→ H is a pairm = (ṁ, m̄) of functions ṁ : Ġ→ Ḣ
and m̄ : Ḡ → H̄ that preserve attachments and labels: attH ◦ m̄ = ṁ∗ ◦ attG,
˙̀
H = ˙̀

G ◦ ṁ, and ¯̀
H = ¯̀

G ◦ m̄.2 The morphism m is injective, surjective, and
bijective if its component functions have the respective property. If m is bijective,
we call G and H isomorphic, and write G ∼= H. If m maps nodes and edges of
G onto themselves, it defines the inclusion of G as a subgraph in H, written
G ↪→ H.

Example 1 (Program Graphs). Figure 1 shows two graphs G and H represent-
ing object-oriented programs. Circles represent nodes, and have their labels in-
scribed. In these particular graphs, edges are always attached to exactly two
nodes, and are drawn as straight or wave-like arrows from their source node to
their target node. (The filling of nodes, and the colors of edges will be explained
in Example 2.)

Program graphs have been proposed in [19] for representing key concepts
of object-oriented programs in a language-independent way. In the simplified
version that is used here, nodes labeled with C, V, E, S, and B represent pro-
gram entities: classes, variables, expressions, signatures and bodies of methods,
respectively. Straight arrows represent the syntactical composition of programs,
whereas wave-like arrows relate the use of entities to their declaration in the
context.

We use the standard definition of graph rewriting [4], and insist on injective
matching of rules; this is no restriction, see [12]. We choose an alternative rep-
resentation of rules proposed in [7] so that the rewriting of rules in Sect. 3 can
be easier defined, see also in Appendix A.

Definition 2.2 (Graph Rewriting). A graph rewrite rule (rule for short)
r = (P ↪→ B ←↩ R) consists of graph inclusions, of a pattern P and a replacement

2 For a function f : A→ B, its extension f∗ : A∗ → B∗ to sequences A∗ is defined by
f∗(a1 . . . an) = f(a1) . . . f(an), for all ai ∈ A, 1 6 i 6 n, n > 0; f ◦ g denotes the
composition of functions or morphisms f and g.
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R in a common body B. A rule is concise if the inclusions are jointly surjective.
By default, we refer to the components of a rule r by Pr, Br, and Rr.

The rule r rewrites a source graph G into a target graph H if there is an
injective morphism B → U to a united graph U so that the squares in the
following diagram are pushouts:

Pr : B R

G U H

m m̃

The diagram exists if the morphism m : P → G is injective, and satisfies the
following gluing condition: Every edge of G that is attached to a node in m(P \R)
is in m(P ). Then m is a match of r in G, and H can be constructed by (i) uniting
G disjointly with a fresh copy of the bodyB, and gluing its pattern subgraph P to
its match m(P ), giving U , and (ii) removing the nodes and edges m(P \R) from
U , yielding H with the embedding morphism m̃ : R → H.3 The construction
is unique up to isomorphism, and yields a rewrite step, which is denoted as
G⇒m

r H.

Example 2 (A Refactoring Rule). Figure 2 shows a rule pum′. Rounded shaded
boxes enclose its pattern and replacement, where the pattern is the box extending
farther to the left. Together they designate the body. (Rule pum′ is concise.) We
use the convention that an edge belongs only to those boxes that contain it
entirely; so the “waves” connecting the top-most S-node to nodes in the pattern
belong only to the pattern, but not to the replacement of pum′.

The pattern of pum′ specifies a class with two subclasses that contain method
implementations for the same signature. The replacement specifies that one of
these methods shall be moved to the superclass, and the other one shall be
deleted. In other words, pum′ pulls up methods. However, it only applies if the
class has exactly two subclasses, and if the method bodies have the particular
shape specified in the pattern.

The graphs in Figure 1 constitute a rewrite step G ⇒m
pum′ H. The shaded

nodes in the source graph G distinguish the match m of pum′, and the shaded
nodes in the target graph H distinguish the embedding m̃ of its replacement.
(The red nodes in G are removed, and the green nodes in H are inserted, with
their incident edges, respectively.)

The general Pull-up Method refactoring of Fowler [10] works for classes with
any positive number of subclasses, and for method bodies of varying shape and
size. This cannot be specified with a plain rule. The general refactoring will be
specified in Example 4 further below.

Graph rewriting can be used for computations on graphs by applying a set
of rules to some input graph as long as possible. Let R be a set of graph rewrite
rules. We write G ⇒R H if G ⇒m

r H for some match m of a rule r ∈ R, and

3 If r is not consise, the nodes and edges of B that are not in the subgraph (P ∪ R)
are not relevant for the construction.
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denote the transitive-reflexive closure of this relation by ⇒∗R. A graph G is in
normalform wrt. R if there is no graph H so that G ⇒R H. A set R of graph
rewrite rules reduces a graph G to some graph H, written G⇒!

R H, if G⇒∗R H
and H is in normalform. R (and ⇒R) is terminating if it does not admit an
infinite rewrite sequence Go ⇒R G1 ⇒R . . . , and confluent if for all rewrite
sequences H1

∗⇐
R
G
∗⇒
R
H2, there exists a graph K with H1

∗⇒
R
K
∗⇐
R
H2.

So, R defines a partial nondeterministic function from graphs to sets of their
normalforms. This function is deterministic if R is confluent, and total if R is
terminating.

Graph rewrite rules can also be used to derive sets of graphs, which are called
languages, as for string grammars. A restricted form of rules has turned out to be
useful for that purpose: they replace a variable by gluing a graph to its attached
nodes and to some nodes in the context [3].

We assume that the labels contain a set X ⊆ Σ̄ of variable names that are
used to label placeholders for subgraphs. X(G) = {e ∈ Ḡ | `G(e) ∈ X} is the
set of variables of a graph G, and G is its kernel, i.e., G without X(G). For
a variable e ∈ X(G), the variable subgraph G(e) consists of e and its attached
nodes.

Graphs with variables are required to be typed in the following way: Variable
names x ∈ X come with a variable graph Gx, which consists of a single edge
labeled with x, to which all nodes are attached exactly once; in every graph
G, the variable subgraph G(e) must be isomorphic to G`G(e), for every variable
e ∈ X(G).

Definition 2.3 (Contextual Grammar). A rule r : (P ↪→ B ←↩ R) is contex-
tual if the only edge e in its pattern P is a variable, and if R equals B without e.

With some start graph Z, a finite set R of contextual rules forms a contextual
grammar Γ = (Σ,R, Z) over the labels Σ, which derives the language

L(Γ ) = {G | Z ⇒∗R G,X(G) = ∅} .

The pattern P of a contextual rule r is the disjoint union of a variable graph Gx
with a discrete context graph, which is denoted as Cr. We call r context-free if
Cr is empty. (Grammars with only such rules have been studied in the theory
of hyperedge replacement [11].)

Example 3 (Contextual Rules for Method Bodies). Figure 3 shows contextual
rules. Variables are represented as boxes with their variable names inscribed;
they are connected with their attached nodes by lines and arrows, ordered from
left to right. When drawing contextual rules like those in Fig. 3, we omit the
box around the pattern. The variable outside the replacement box is the unique
edge in the pattern, and green filling (appearing grey in B/W print) designates
the contextual nodes within the box representing the replacement graph.

The set M = {bodyn, use, calln, ass} of contextual rules derives the data flow
of method bodies in program graphs. A method body consists of expressions,
which in turn either use the value of a variable, or call a method signature with
expressions that are their actual parameters, or assign the value of an expression
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to it. Actually, bodyn and calln abbreviate sets of (context-free) replicative rules
that generate graphs with n > 0 copies of variables named Exp. The rules bodyn
are context-free; in the rules for Exp, variable and signature nodes are contextual.

Figure 4 shows a derivation of a method body with M. Note that the body
can only be derived if the start graph contains appropriate nodes representing
variables and signatures. The missing rules of the complete grammar for pro-
gram graphs are given in [3]; they do derive appropriate contextual nodes. (The
language of program graphs cannot be derived with context-free rules [3].)

As for context-free string grammars, ambiguity is an important issue if the
graphs derived by a contextual grammar shall be transformed. This property
will be used in Lemma 3.6 further below.

Definition 2.4 (Ambiguity). Let Γ = (Σ,R, Z) be a contextual grammar.
Consider two rewrite steps G ⇒m

r H ⇒m′
r′ K where m̃ : R → H is the

embedding of r in H. The steps may be swapped if m′(P ′) ↪→ m̃(P ∩R), yielding
steps G ⇒m′

r′ H ′ ⇒m
r K. Two rewrite sequences are equivalent if they can be

made equal by repeatedly swapping their steps.
Then Γ is unambiguous if all rewrite sequences Z ⇒∗R G for a graph G are

equivalent to each other; if some graph G has at least two rewrite sequences that
are not equivalent, Γ is ambiguous.

3 Schema Refinement with Contextual Meta-Rules

The graph rewriting tool grgen [1] supports object-oriented graph models with
subtyping and attributes, named and parameterized rewrite rules with negative
application conditions, and translates them to code that is highly optimized.
Edgar Jakumeit [16,15] has extended the rules drastically, by introducing recur-
sive refinement:

• Rules may contain variables; we call them schemata.
• The substitution of variables can be defined by meta-rules that are based on

contextual rules as in Def. 2.3.
• A variable may be attached to nodes in the pattern and the replacement of

a rule. Then its substitution refines pattern and the replacement of a schema
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at the same time. This does not only allow to match, delete, or replicate sub-
graphs of unbounded size and arbitrary shape: the rules that derive recursive
sub-rules transform such subgraphs in a single rule application.

We started to study this way of rewriting with contextual refinement in [14]; this
work shall be continued in this paper.

We lift morphisms from graphs to rules, for defining the rewriting of rules by
meta-rules. For (graph rewrite) rules r and s, a graph morphism m : Br → Bs
on their bodies is a rule morphism, and denoted as m : r → s, if m(Pr) ↪→ Ps
and m(Rr) ↪→ Rs. Graph rewrite rules and rule morphisms form a category.
This category has pushouts, pullbacks, and unique pushout complements along
injective rule morphisms, just as graphs. As with graphs, we write rule inclusions
as “↪→”, and let r be the kernel of a rule r wherein all variables are removed.

Definition 3.1 (Rule Rewriting). A pair δ : (p ↪→ b ←↩ r) of rule inclusions
is a rule rewrite rule, or meta-rule for short. With δB we denote its body rule,
which is a graph rewrite rule consisting of the bodies of p, b, and r.

Consider a rule s, a meta-rule δ as above, and a rule morphism m : p → s.
The meta-rule δ rewrites the source rule s at m to the target rule t, written
s ⇓mδ t, if there is a pair of pushouts

pδ : b r

s u t

m m̃

The pushouts above exist if the underlying body morphism of m satisfies the
graph gluing condition wrt. the body rule δB and the body graph Bs.

We use meta-rules with contextual body rules, and apply them to rules that con-
tain variables in their body (but neither in their pattern, nor in their replacement
graphs).

Definition 3.2 (Schema Refinement). A schema s : (P ↪→ B ←↩ R) is a
graph rewrite rule with P ∪R = B.

Every schema s is required to be typed in the following sense: every variable
name x ∈ X comes with a schema sx with body Gx so that for every variable e ∈
X(B), the variable subgraph B(e) is the body of a subschema that is isomorphic
to sx.

A meta-rule δ : (p ↪→ b←↩ r) is contextual if p, b, and r are schemata, and if
its body rule δB : (Bp ↪→ Bb ←↩ Br) is a contextual rule so that the contextual
nodes CδB are in Pp ∩Rp.

A less contextual variation δ′ of a meta-rule δ equals δ up to the fact that in
its body rule δ′B , some nodes of CδB are removed from PδB , but kept in RδB . Let
∆ be a finite set of meta-rules that is closed under less contextual variations.4

Then ⇓∆ denotes refinement steps with one of its meta-rules, and ⇓∗∆ denotes

4 We explain in Example 7 why less contextual variations are needed.
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Fig. 6. Replicating meta-rules ∆M = {bodyn,i, usei, calln,i, assi} for the rules M in Fig. 3

repeated refinement, its reflexive-transitive closure. ∆(s) denotes the refinements
of a schema s : (P ↪→ B ←↩ R), containing its refinements without variables:

∆(s) = {r | s ⇓∗∆ r,X(Br) = ∅ }

We write G⇒∆(s) H if G⇒r H for some r ∈ ∆(s), and say that the refinements
∆(s) rewrite G to H.

Example 4 (Pull-Up Method). Fowler’s refactoring operation Pull-up Method [10]
applies to a class c where all direct subclasses contain bodies for the same method
signature that are semantically equivalent.5 It pulls one of these bodies up to c,
and removes all others.

The meta-rules ∆M = {bodyn,i, usei, calln,i, assi} for generic meta-variables
Bdyi and Expi in Fig. 6 replicate method bodies as defined by the contextual

5 This condition cannot be decided mechanically; it has to be confirmed by the user
when s/he applies the operation, by a priori verification or a-posteriori testing.
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rules M in Fig. 3: they remove one method body from a pattern and insert
i > 0 copies of this body in the replacement of a schema. In the less contextual
variations usei, calln,i, and assi of these meta-rules (which are not shown here)
the S- and V-nodes are no longer contextual. The schema pum in Fig. 5 uses
several meta-variables Bdy0 that just remove one method body from a subclass
in the pattern, and one variable Bdy1 that moves a method body from one
subclass in the pattern to the superclass in the replacement.6

In schemata and meta-rules, the lines between a variable e and a node v
attached to e get arrow tips (i) at e if v occurs in the pattern, and (ii) at v if v
occurs in the replacement, and (iii) both at e and v if v occurs in both, pattern
and replacement. (The last case does not occur in our example.)

The rule pum′ in Fig. 2 is a refinement of pum with∆M, i.e., pum′ ∈ ∆M(pum).
The upper row in Fig. 10 on page 12 shows a step in the refinement sequence
pum ⇓∗∆M

pum′; it applies the context-free variation assi of the meta-rule assi in
Fig. 6.

A single rewriting step with some refinement of pum copies one method body
of arbitrary shape and size, and deletes an arbitrarily number of other bodies,
which are also of variable shape and size. This goes beyond the expressiveness
of plain rewrite rules, which may only match, delete, and replicate subgraphs of
constant size. Note that the application of a refinement r ∈ ∆(s), although it is
the result of a compound meta-derivation, is a single rewriting step G⇒r H on
the source graph G, similar to a transaction in a data base. Note also that the
refinement process is completely rule-based.

Operationally, we cannot construct all refinements of a schema s first, and
apply one of them later, because the set ∆(s) is infinite in general. Rather, we
interleave matching and refinement, in the next section.

The following assumption excludes useless sets of meta-rules.

Assumption. The set ∆(s) of refinements of a schema s shall be non-empty.

This property is decidable for contextual grammars [3, Corollary 2].
We need a mild condition to show that residual rewriting terminates.

Definition 3.3 (Pattern-Refining Meta-Rules). A meta-rule (p ↪→ b←↩ r)
refines its pattern if X(Rr) = ∅ or if Pr 6∼= Pp. A set ∆ of meta-rules that refine
their patterns is called pattern-refining.

Theorem 3.4. For a schema s and a set ∆ of pattern-refining meta-rules, it is
decidable whether some refinement r ∈ ∆(s) applies to a graph G, or not.

Proof. By Algorithm 1 in [14], the claim holds under the condition that meta-
rules “do not loop on patterns”. It is easy to see that pattern-refining meta-rules
are of this kind. ut
6 The ellipses “. . . ” allows any number k > 0 subclasses to be matched for removing a

body. In Fowler’s operation, no further subclasses should exist. However, this could
only be scpecified with a negative application condition for the schema, in future
work.
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We now turn to the question whether the patterns of refinements uniquely
define the replacement they perform.

Definition 3.5 (Right-Unique Meta-Rules). A set R of graph rewrite rules
is right-unique if different meta-rules r1, r2 ∈ ∆ have different patterns, i.e.,
P1
∼= P2 implies that r1 ∼= r2.

We have to define an auxiliary notion first. The pattern rule δP of a meta-rule
δ : (p ↪→ b←↩ r) is a contextual rule obtained from the body rule δB by removing
all nodes and edges in Bb \ Rb, and by detaching all variables in δB from the
removed nodes. Let ∆P denote the set of (contextual) pattern rules of a set ∆
of meta-rules.7

Lemma 3.6 (Right-Uniqueness of Refinements). A set ∆(s) of refine-
ments is right-unique if the pattern grammar (Σ,∆P , Ps) is unambiguous.

Proof Sketch. Consider rules r1, r2 ∈ ∆(s) with P1
∼= P2. Then Ps ⇒∆P

P1 and
Ps ⇒∆P

P2. The rewrite sequences can be made equal since ∆P is unambiguous.
This rewriting sequence has a unique extension to a meta-rewrite sequence so
that r1 ∼= r2. ut
Example 5 (Pattern-Refining, Right-Unique Meta-Rules). The meta-rules ∆M in
Fig. 6 are pattern-refining. The contextual rules M for method bodies in Fig. 3
are unambiguous. They correspond to the pattern rules of the meta-rules ∆M in
Fig. 6, so that these are right-unique. (The meta-rules for the encapsulate Field
refactoring schema in [14, Ex. 5] are pattern-refining and right-unique as well.)

4 Modeling Refinement by Residual Rewriting

As a first step to analyzing further properties of schemata and meta-rules, we
translate them into standard graph rewrite rules:

• We turn every schema into an ordinary rule that delays refinement, by adding
the meta-variables to its replacement, with all their attached nodes.
• We turn every contextual meta-rule δ : (p ↪→ b ←↩ r) into an graph rewrite

rule that refines the delaying rule incrementally, by adding the pattern of r
to that of p, and the variable graphs of Br to the replacement Rr.

Definition 4.1 (Incremental Refinement Rules). Let s : (P ↪→ B ←↩ R)
be a schema for meta-rules ∆.

The delaying rule s̃ : (P ↪→ B ←↩ Rs̃) of s has the same pattern P and body
B as s, and its replacement Rs̃ = R ∪ {B(e) | e ∈ X(B)} is obtained by uniting
R with the graphs of all variables in B.

For a meta-rule δ = (p ↪→ b ←↩ r), the incremental rule δ̃ : (P̃ ↪→ B̃ ←↩ R̃)
has the pattern P̃ = Bp ∪Pr, a replacement R̃ = Rr ∪{Br(e) | e ∈ X(Br)}, and

the body B̃ = Bb. ∆̃ denotes the incremental rules of ∆.

7 The graphs and in ∆P are also typed, but in the type graph Gx of a variable name
x, all nodes that do not belong to the pattern of the schema sx are removed.
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Fig. 7. Delaying and incremental rules for Pull-up Method in Fig. 5 and Fig. 6

Example 6 (Incremental Refinement). Figure 7 shows how the schema pum for
the Pull-up Method refactoring in Fig. 5 is translated into a delaying rule p̃um,
and how the context-free variation ass1 of the meta-rule ass1 in Fig. 6 is trans-
lated into an incremental rule ãss1. (In the delayed rule p̃um, red arrow and
waves (appearing grey in B/W print) indicate edges that do not belong to the
replacement.)

If a schema s is refined with a metarule δ to a schema t, the composition s̃ ◦d δ̃
of its delayed and incremental rules (defined in Def. A.1) equals the delayed rule
t̃ (for a particular dependency d).

Lemma 4.2. Consider a schema s = (P ↪→ B ←↩ R) and a meta-rule δ : (p ↪→
b←↩ r).

Then s ⇓δ,m t for some schema t iff there is a composition rd = s̃ ◦d δ̃ for a
dependency d : (R←

m
Bp → (Bp ∪Rp) so that rd = t̃.

Proof Sketch. Let s, δ be as above, t : (P ′ ↪→ B′ ←↩ R′), s̃ : (P ↪→ B ←↩ Rs̃) with
Rs̃ = R ∪ {B(e) | e ∈ X(B)}, and δ̃ : (P̃ ↪→ B̃ ←↩ R̃) with P̃ = Bp ∪ Pr, R̃ =

Rr∪{Br(e) | e ∈ X(Br)}, and B̃ = Bb, see Def. 4.1. Their composition according
to the dependency d : (R←

m
Bp → (Bp ∪ Rp) is constructed as in Def. A.1, and

shown in Fig. 9.

Bp Bb Br

B U B′
m

Fig. 8. B ⇒m
δB

B′

Bp

R{B(e) | e ∈ X(B)}∪

B

P

O

Bp∪Rp

Bb

Rr∪{Br(e) | e ∈ X(Br)}J1 J2

P d RdBd

m

Fig. 9. rd = s̃ ◦d δ̃
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Fig. 10. Schema refinement and incremental composition

Consider the underlying body refinement B ⇒m
δB

B′. (See Fig. 8, where
we assume that the lower horizontal morphisms are inclusions.) By uniqueness
of pushouts, U ∼= Bd. Then (Bb \ Bp) = X(Bp) since δB is contextual, and
B′ = U \ m̄(X(Bp)).

It is then easy to show that the body B′
δ̃

equals the body Bd of the composed
delaying rule, and an easy argument concerning the whereabouts of variables
shows that t̃ = rd. ut

Example 7 (Schema Refinement and Incremental Rules). Figure 10 illustrates
the relation between schema refinement and the composition of their incremental
rules established in Lemma 4.2. As already mentioned in Example 4, the upper
row shows a step in the refinement sequence pum ⇓∗∆M

pum′ that applies the
context-free variation ass1 of the meta-rule ass1 in Fig. 6. This step shows why
we need less contextual variations of meta-rules: The original meta-rule does not
apply to the source schema, as it does not contain a node labeled V. The less
contextual rule does apply; the refined rule is constructed so that The V-node
will be matched in the context when it is applied to a source graph.

The lower row shows the composition of the corresponding delaying rule
with the corresponding incremental refinement rule ãss1, where the dashed box
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specifies the dependency d for the composition. The composed rule equals the
delaying rule for the refined schema.

Using a refined schema has the same effect as applying its delaying rule, and the
incremental rules of the corresponding meta-rules. This must follow a strategy
that applies incremental rules as long as possible, matching the residuals of the
source graphs, before another delaying rule is applied.

We define the subgraph that is left unchanged in refinement steps and se-
quences. To ease the following definitions, we assume wlog. that a rewrite step
G⇒m

r H with a diagram as in Def. 2.2 is constructed so that the lower horizon-
tal morphisms are inclusions G ↪→ U ←↩ H. The track of G in H (via the match
m of the rule r) is then defined as trmr (G) = (G ∩ H). For a rewrite sequence
d = G0 ⇒m1

r1 G1 ⇒m2
r2 . . .⇒mn

rn Gn, the track of G in H is given by intersecting
the tracks of its steps:

trd(G) = trm1
r1 (G0) ∩ · · · ∩ trmn

rn (Gn−1)

The incremental rules have to be applied so that the patterns of the refinements
of the original meta-rules do not overlap.

Definition 4.3 (Residual Incremental Refinement). Consider an incre-
mental refinement sequence

G0 ⇒m1

δ̃1
G1 ⇒m2

δ̃2
. . .⇒mn

δ̃n
Gn

with incremental rules δ̃i for meta-rules δi : (pi ↪→ bi ←↩ ri) (for 1 6 i 6 n).
The step Gi−1 ⇒mi

δ̃i
Gi is residual if mi(Pri) ⊆ tr

m1...mi−1
r1...ri−1 (G). The sequence

is residual if every of its steps is residual. Residual steps and sequences are
denoted as V and V∗, respectively.

Lemma 4.4. Consider a schema s for meta-rules ∆ with delaying rule s̃ and
incremental rules ∆̃.

Then a rule r : (P ↪→ B ←↩ R) is a refinement in ∆(s) if and only if P ⇒s̃

P ′ V!
∆̃
R.

Proof. By induction over the length of meta-derivations, using Lemma 4.2 and
the fact that compositions correspond to residual rewrite steps. ut

Theorem 4.5. Consider a schema s with meta-rules ∆ as above. Then, for
graphs G, H, and K, G⇒∆(s) H if and only if G⇒s̃ K V!

∆̃
H.

Proof. Combine Lemma 4.4 with the embedding theorem [4, Sect. 6.2]. ut

5 Conclusions

In this paper we have defined how the refinement of schemata of plain graph
rewrite rules according to contextual meta-rules can be translated to standard
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rules that perform the refinement incrementally. We have also investigated condi-
tions under which the refinement behaves well, i.e., terminates, and yields unique
refinements.

Our ultimate goal is to analyze confluence of systems of schemata and meta-
rules with the critical pair lemma [17]. The negative result shown in [14, Thm. 3]
indicates that considerable restrictions have to be made to reach this aim. A
possible way could be to restrict the rewriting with refinements to graphs that are
shaped, e.g., according to contextual grammars like the program graphs shown
in this paper.

Until now, we have not considered attributed graphs and subtyping. As they
are included in the foundation [4], we expect that this can be added in a rather
orthogonal way. We also restricted ourselves to unconditional rules. Rules with
nested application conditions have been added to the theory in [6,5]; recently,
Hendrik Radke has studied recursive refinement of such conditions [13]. We plan
to add these concepts to our definition in the future.

Acknowledgments. I am indebted to Annegret Habel and Rachid Echahed for
their patience and their encouragement.
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A Double-Pushout Graph Rewriting

The standard theory of graph rewriting is based on so-called spans of (injective)
graph morphisms [4], where a rule consists of two morphisms from a common
interface I to a pattern P and a replacement R. An alternative proposed in [7]
uses so-called co-spans (or joins) of morphisms where the pattern and the re-
placement are both included in a common supergraph, which we call the body
of the rule.

Rewriting is defined by double pushouts as below:

Pr̂ : I R

G C H

m

Př : B R

G U H

m

Intuitively, rewrites are constructed via a match morphism m : P → G in a
source graph G; for a span rule r̂, removing the match of obsolete pattern items
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P \ I yields a context graph C to which the new items R \ I of the replacement
are then added; for a cospan rule ř, the new items B \P are added first, yielding
the united graph U before the obsolete pattern items B \ P are removed. The
constructions work if the matches m satisfy certain gluing conditions.

The main result of [4] says that ř is the pushout of r̂, making these rules,
their rewrite steps, and gluing conditions dual to each other. Therefore we feel
free to use the more intuitive gluing condition for r̂ together with a rule ř.

The following definition and theorem adapt well-known concepts of [4] to our
notion of rules.

Definition A.1 (Sequential Rules Composition). Let r1 : (P1 ↪→ B1 ←↩
R1) and r2 : (P2 ↪→ B2 ←↩ R2) be rules, and consider a graph D with a pair
d : (R1 ← D → P2) of injective morphisms.

1. Then d is a sequential dependency of r1 and r2 if D 6↪→ P1 (which implies that
D 6= 〈〉).

2. The sequential composition r1 ◦d r2 : (P d ↪→ Bd ←↩ Rd) of r1 and r2 along d
is the rule constructed as in the commutative diagram of Fig. 11, where all
squares are pushouts.

3. Two rewrite steps G ⇒r1 H ⇒r′2 K are d-related if d is the pullback of the

embedding R1 → H and of the match P2 → H .8

Proposition A.2. Let r1 and r2 be rules with a dependency d and a sequential
composition rd as in Def. A.1.

Then there exist d-related rewrite steps G ⇒r1 H ⇒r2 K if and only if
G⇒rd K.

Proof. Straightforward use of the corresponding result for “span rules” [4,
Thm. 5.23] and of the duality to “cospan rules” [7]. ut

8 A pullback of a pair of morphisms B → D ← C with the same codomain is a pair of
morphisms B ← A→ C that is commutative, i.e., A→ B → D = B → C → D, and
universal, i.e., for every pair of morphisms B → A′ ← C so that A′ → B → D =
A′ → C → D, there is a unique morphism A′ → A so that A→ A′ → B = A′ → B
and A′ → A→ C = A′ → C. See [4, Def. 2.2]

D

R1

B1

P1

O

P2

B2

R2J1 J2

P d RdBd

Fig. 11. Sequential composition of graph rewrite rules
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